Question

A 100 mL sample of 0.300 M NaOH is mixed with a 100 mL sample of 0.300 M HNO3 in a coffee cup calorimeter. The two substances react according to the following chemical equation: NaOH(aq) + HNO3(aq) → NaNO3(aq) + H2O(l) Both solutions were initially at 35.0 °C. The temperature of the solution after reaction was 37.0 °C. Estimate the ΔHrxn (in kJ/mol NaOH). Assume: i) no heat is lost to the calorimeter or the surroundings; and ii) the density and the specific heat of the solution are the same as for water (1 g/mL and 4.184 J g-1 o C-1 , respectively).

Answer #1

The number of moles of NaOH reacted

The temperature change

Total volume

Density is assumed to be 1 g/mL.

Mass of solution

The heat capacity

Heat of reaction

This is heat of reaction for 0.030 moles of NaOH

For one mole of NaOH

Convert the unit from J to kJ

A 50.0 mL sample of 0.300 M NaOH is mixed with a 50.0 mL sample
of 0.300 M HNO3 in a coffee cup calorimeter. If both solutions were
initially at 35.00°C and the temperature of the resulting solution
was recorded as 37.00°C, determine the ΔH°rxn (in units of kJ/mol
NaOH) for the neutralization reaction between aqueous NaOH and HCl.
Assume 1) that no heat is lost to the calorimeter or the
surroundings, and 2) that the density and the heat...

A 90.2 mL sample of 1.00 M NaOH is mixed with 45.1 mL of 1.00 M
H2SO4 in a large Styrofoam coffee cup; the cup is fitted with a lid
through which passes a calibrated thermometer. The temperature of
each solution before mixing is 21.05 °C. After adding the NaOH
solution to the coffee cup and stirring the mixed solutions with
the thermometer, the maximum temperature measured is 32.10 °C.
Assume that the density of the mixed solutions is 1.00...

A 107.2 mL sample of 1.00 M NaOH is mixed with 53.6 mL of 1.00 M
H2SO4 in a large Styrofoam coffee cup; the
cup is fitted with a lid through which passes a calibrated
thermometer. The temperature of each solution before mixing is
22.45 °C. After adding the NaOH solution to the coffee cup and
stirring the mixed solutions with the thermometer, the maximum
temperature measured is 32.10 °C. Assume that the density of the
mixed solutions is 1.00...

A 100.0 ml sample of 1.00 M NaOH is mixed with 50.0 ml of 1.00 M
H2SO4 in a large Styrofoam coffee cup; the cup is fitted with a lid
through which passes a calibrated thermometer. the temperature of
each solution before mixing is 22.5°C. After adding the NaOH
solution to the coffee cup and stirring the mixed solutions with
thermometer; the maximum temperature measured is 32.1 C. Assume
that the density of the mixed solutions is 1.00 g/ml that...

A 97.2 mL sample of 1.00 M NaOH is mixed with 48.6 mL of 1.00 M
H2SO4 in a large Styrofoam coffee cup; the cup is fitted with a lid
through which passes a calibrated thermometer. The temperature of
each solution before mixing is 23.05 °C. After adding the NaOH
solution to the coffee cup and stirring the mixed solutions with
the thermometer, the maximum temperature measured is 32.50 °C.
Assume that the density of the mixed solutions is 1.00...

A 96.2 mL sample of 1.00 M NaOH is mixed with 48.1 mL of 1.00 M
H2SO4 in a large Styrofoam coffee cup; the
cup is fitted with a lid through which passes a calibrated
thermometer. The temperature of each solution before mixing is
22.25 °C. After adding the NaOH solution to the coffee cup and
stirring the mixed solutions with the thermometer, the maximum
temperature measured is 30.90 °C. Assume that the density of the
mixed solutions is 1.00...

A 90.2 mL sample of 1.00 M NaOH is mixed with 45.1 mL of 1.00 M
H2SO4 in a large Styrofoam coffee cup; the cup is fitted with a lid
through which passes a calibrated thermometer. The temperature of
each solution before mixing is 21.45 °C. After adding the NaOH
solution to the coffee cup and stirring the mixed solutions with
the thermometer, the maximum temperature measured is 30.90 °C.
Assume that the density of the mixed solutions is 1.00...

300 mL of a 0.694 M HCl aqueous solution is mixed with 300 mL of
0.347 M Ba(OH)2 aqueous solution in a coffee-cup calorimeter. Both
the solutions have an initial temperature of 28.7 °C. Calculate the
final temperature of the resulting solution, given the following
information: H+(aq) + OH- (aq) → H2O(ℓ) ΔHrxn = -56.2 kJ/mol
Assume that volumes can be added, that the density of the solution
is the same as that of water (1.00 g/mL), and the specific...

In a coffee-cup calorimeter, 130.0 mL of 1.0 M NaOH and 130.0 mL
of 1.0 M HCl are mixed. Both solutions were originally at 26.8°C.
After the reaction, the final temperature is 33.5°C. Assuming that
all the solutions have a density of 1.0 g/cm and a specific heat
capacity of 4.18 J/°C ⋅ g, calculate the enthalpy change for the
neutralization of HCl by NaOH. Assume that no heat is lost to the
surroundings or to the calorimeter.
Enthalpy change...

When 50.00 mL of aqueous HCl was mixed with 50.00 mL of NaOH (in
large excess), the temperature of the solution increased from 25.00
°C to 30.09 °C. The reaction is NaOH(aq) + HCl(aq) ↔ NaCl(aq) +
H2O(aq) -- ΔH = -57.3 kJ What was the molarity of the original HCl
solution? Assume the heat capacity of the solution is the same as
pure water (4.184 J/g*°C), the density of the solution is 1.00 g/mL
and there is no loss...

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 3 minutes ago

asked 16 minutes ago

asked 20 minutes ago

asked 36 minutes ago

asked 46 minutes ago

asked 50 minutes ago

asked 51 minutes ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago