Question

A similar reaction, the reaction between phenolphthalein and NaOH is first order in respect to NaOH....

A similar reaction, the reaction between phenolphthalein and NaOH is first order in respect to NaOH. If the rate constant is calculated is 1.40*10-2 LM-1s-1 at 20.95 C and 5.72*10-2 LM-1s-1 at 47.05 C. What is the activation energy of the reaction?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
a) The reaction A(aq) → B(aq) is a first order reaction with respect to A(aq). The...
a) The reaction A(aq) → B(aq) is a first order reaction with respect to A(aq). The concentration of A(aq) is reduced from 0.892 M to 0.505 M in 3.05 minutes. What is the half-life, in seconds, of this reaction? b) The reaction A(aq) → 2 B(aq) is a second order reaction with respect to A(aq). Its activation energy is 49.5 kJ/mol. When the concentration of A(aq) is 0.100 M and the temperature is 25.0oC, the rate of reaction is 0.333...
The gas-phase association reaction between F2 and IF5 is first-order in each of the reactants. The...
The gas-phase association reaction between F2 and IF5 is first-order in each of the reactants. The energy of activation for the reaction is 58.6 kJ mol−1. At 65°C the rate constant is 7.84 ✕ 10−3 kPa−1 s−1. Calculate the entropy of activation at 65°C. Please show all work and report answer in J/k*mol to multiple sig figs.
Question 5: The reaction A(aq) → B(aq) is a first order reaction with respect to A(aq)....
Question 5: The reaction A(aq) → B(aq) is a first order reaction with respect to A(aq). The concentration of A(aq) is reduced from 0.822 M to 0.576 M in 3.16 minutes. What is the half-life, in seconds, of this reaction? Question 6: The reaction A(aq) → B(aq) + C(aq) is a first order reaction with respect to A(aq). The half-life of A(aq) is 93.2 s at 25.0oC and its half-life is 60.9 s at 75.0oC. What is its half-life at...
The rate constant of a first-order reaction is 3.20 × 10−4 s−1 at 350.°C. If the...
The rate constant of a first-order reaction is 3.20 × 10−4 s−1 at 350.°C. If the activation energy is 135 kJ/mol, calculate the temperature at which its rate constant is 9.15 × 10−4 s−1.
If a first order reaction has a rate constant of 4.15 X 10-2 s-1 at a...
If a first order reaction has a rate constant of 4.15 X 10-2 s-1 at a temperature of 24.5oC, what would the value of k be if the reaction temperature was changed to 52oC given that the activation energy is 67.8 kJ/mol?
The first-order rate constant for the reaction of methyl chloride (CH3Cl) with water to produce methanol...
The first-order rate constant for the reaction of methyl chloride (CH3Cl) with water to produce methanol (CH3OH) and hydrochloric acid (HCl) is 3.32 × 10−10 s−1 at 25°C. Calculate the rate constant at 47.5°C if the activation energy is 116 kJ/mol.
This reaction: A--->B+C is known to be second order with respect to A and to have...
This reaction: A--->B+C is known to be second order with respect to A and to have a rate constant of 0.243M-1s-1 at 297K. An experiment was run at this temperature where [A]o=0.391M. Calculate the concentration of B after 0.161s have elapsed.
The reaction: A -> B+C is known to be second order with respect to A and...
The reaction: A -> B+C is known to be second order with respect to A and to have a rate constant of 0.225 M-1s-1 at 277 K. An experiment was run at this temperature where [A]o = 0.387 M. Calculate the concentration of B after 0.119 seconds has elapsed.
1) A first order reaction has an activation energy of 66.6 kJ/mol and a frequency factor...
1) A first order reaction has an activation energy of 66.6 kJ/mol and a frequency factor (Arrhenius constant) of 8.78 x 1010 sec -1. Calculate the rate constant at 19 oC. Use 4 decimal places for your answer. 2) A first order reaction has a rate constant of 0.988 at 25 oC and 9.6 at 33 oC. Calculate the value of the activation energy in KILOJOULES (enter answer to one decimal place)
A certain first order reaction has k = 6.2 × 10‒5 s‒1 at 35 oC and...
A certain first order reaction has k = 6.2 × 10‒5 s‒1 at 35 oC and an activation energy of 108 kJ/mole. What is the numerical value of the specific rate constant, k, at 45 oC? A certain first order reaction has k = 9.3 × 10‒5 M‒1 s‒1 at 100 oC and k = 1.0 × 10‒3 M‒1 s‒1 at 130 oC. What is the numerical value of the activation energy in kJ/mol for this reaction?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT