Question

a coffe cup calorimetry experiment was performed in a general chemistry class. Two lab partners added...

a coffe cup calorimetry experiment was performed in a general chemistry class. Two lab partners added 78.9g of lead initally at a temperature of 102.1 degrees celcuis, to a sample of water in a coffee-cup calorimeter. the water in the calorimeter startedout at 22.9 degrees celcuis, once the temperature of the water and the metal equilibrated the final temperature of both was 24.3 degree celcuis. Calculate the mass of water that must have been in their calorimeter. The spefific capacity of silver is 0.190 J/gC and specific heat capacity of water is 4.184 J/gC.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
These questions pertain to a lab done on calorimetry. A block of metal was heated in...
These questions pertain to a lab done on calorimetry. A block of metal was heated in a hot water bath and transferred to styrofoam cup 2/3 full of room temperature water. 1. If the hot metal had been very wet when it was transferred into the calorimeter, how would the experimental value of the specific heat capacity have been changed? Explain. 2. Explain, on an atomic/molecular level, how and why specific heat capacity is specific.
I recently did a lab where we used a Styrofoam coffee cup calorimeter to determine the...
I recently did a lab where we used a Styrofoam coffee cup calorimeter to determine the specific heat of an unknown metal. We just determined our "calorimeter constant." We now have to re-do all of our prior calculations to include this new constant. I may have written down the wrong equation, so could someone show me an example given the following information? Heat capacity of calorimeter: 41.6 J/gC Mass of metal: 43.0760g Mass of water: 20.6314g Delta T water: 21.1...
In an experiment, 0.502 kg of metal at 100. C∘ is added to 30.0 kg of...
In an experiment, 0.502 kg of metal at 100. C∘ is added to 30.0 kg of water at 20.0 C∘ in an aluminum calorimeter cup of mass 0.250 kg. The final temperature of the system is 50.0 C∘ a. (5 points) If a calorimetry was to be performed on the system, what is/are the assumption(s) you would make for the system? b. (15 points) Calculate the specific heat capacity and heat capacity of the unknown metal.
Enter your answer in the provided box. When 22.9 mL of 0.500 M H2SO4 is added...
Enter your answer in the provided box. When 22.9 mL of 0.500 M H2SO4 is added to 22.9 mL of 1.00 M KOH in a coffee-cup calorimeter at 23.50°C, the temperature rises to 30.17 °C. Calculate ΔH of this reaction. (Assume that the total volume is the sum of the individual volumes and that the density and specific heat capacity of the solution are the same as for pure water.) (d for water = 1.00 g/mL; c for water =...
Calorimetry Problem: Show your work neatly and methodically. Include the sign associated with ΔH. 1. When...
Calorimetry Problem: Show your work neatly and methodically. Include the sign associated with ΔH. 1. When a 6.55 gram sample of solid sodium hydroxide dissolves in 115.00 grams of water in a coffee-cup calorimeter, the temperature rises from 21.6°C to 38.7°C. Calculate ΔH, in kJ/mole NaOH, for the solution process. NaOH(s)  Na1+(aq) + OH1- (aq) The specific heat of the solution is 4.18 J/g °C. 3. 2, A 2.600 gram sample of phenol, C6H5OH, was burned in a bomb...
A coffee-cup calorimeter initially contains 125 g water at 24.2 degrees celsius. Ammonium Nitrate (10.5 g),...
A coffee-cup calorimeter initially contains 125 g water at 24.2 degrees celsius. Ammonium Nitrate (10.5 g), also at 24.2 degree celsius, is added to the water, and after the ammonium nitrate dissolves, the final temperature is 18.3 degrees celsius.What is the heat of solution of ammonium nitrate in kj/mol? Assume that the specific heat capacity of the solution is 4.18 J/Cg and that no heat is transferred to the surrounds or to the calorimeter.
two parts for one question ----------------------------------------- In the laboratory a "coffee cup" calorimeter, or constant pressure...
two parts for one question ----------------------------------------- In the laboratory a "coffee cup" calorimeter, or constant pressure calorimeter, is frequently used to determine the specific heat of a solid, or to measure the energy of a solution phase reaction. Since the cup itself can absorb energy, a separate experiment is needed to determine the heat capacity of the calorimeter. This is known as calibrating the calorimeter and the value determined is called the calorimeter constant. One way to do this is...
1. A metal sample, at 20. degree Celsius, has a heat capacity of 0.25 J/C. How...
1. A metal sample, at 20. degree Celsius, has a heat capacity of 0.25 J/C. How much heat it must absorb to increase its temperature to 53 degree Celsius? 2. In a coffee-cup calorimeter, 50.0 g hot water at 60.0 C was mixed with 50.0 g cold water at 20.0 C. If the final temperature is 36.9, what is the heat capacity of the calorimeter in J/C? Specific heat of water is 4.184 J/(g C) 3. Green line of Hg...
Post lab question reguarding bomb calorimetry: Heat capacity for calorimeter: 10403.64 J/◦C Delta H TTCC: -6864.20...
Post lab question reguarding bomb calorimetry: Heat capacity for calorimeter: 10403.64 J/◦C Delta H TTCC: -6864.20 kJ/mol Resonance energy benzene: 423.01 kJ/mol ΔE = -7096.54kJ/mol 1. How does the bomb get sealed when it is charged with oxygen gas? 2. Why is 1 mL of water added to the bomb before the oxygen gas is added? Would one drop (0.05 mL) of water be satisfactory? 3. Is the mechanical energy of the stirrer included in the heat capacity of the...
19. How much heat is liberated (in kJ) from 2.47E+2 g of silver when it cools...
19. How much heat is liberated (in kJ) from 2.47E+2 g of silver when it cools from 8.86E+1 °C to 2.57E+1 °C? The heat capacity of silver is 0.235 J g^{-1} °C^{-1} g−1°C−1. Note, "heat liberated" implies that the change in heat is negative. Enter a positive number 20. A sample of sand initially at 2.18E+1 °C absorbs 1.386E+3 J of heat. The final temperature of the sand is 6.7E+1 °C. What is the mass (in g) of sand in...