A prominent chemical manufacturer finds itself producing large amounts of chloroethane (CH3CH2Cl), a toxic byproduct of one of its processes. Using water, a clever chemist proposes to convert this compound into ethanol and hydrochloric acid (converting the toxic waste into two value-added products) using the following reaction:
CH3CH2Cl(g) + H2O(g) ↔ CH3CH2OH(g) + HCl(g) (100 °C)
Use the data in Appendix A. (Below)
a. Calculate the value of DrHº
b. Calculate DrSº, DsurroundingsSº and DuniverseSº a. Calculate the value of DrHº
c. Calculate DrGº for this reaction at 100 °C (Assume that DSº and DHº values do not vary with temperature)
d. Is this reaction spontaneous at 100oC? What effect would lowering the temperature to 50oC have on the position of the equilibrium?
e. Find the KPvalue of the reaction. Write the equilibrium constant expression for the reaction.
f. If a closed vessel containing 0.010 atm of chloroethane is reacted with 1.0 atm of water vapor at 100 °C, what will be the partial pressure of chloroethane in the vessel when equilibrium is reached?
Appendix A: Thermodynamic parameters for selected molecules
molecule |
DH0f (kJ mol-1) |
Sf0 (J K-1 mol-1) |
C2H5OH (g) |
-234.8 |
281.6 |
C2H5Cl (g) |
-261.9 |
268.4 |
HCl (g) |
-92.31 |
186.91 |
H2(g) |
0 |
130.6 |
H2O(l) |
-285.8 |
69.9 |
H2O(g) |
-241.8 |
188.7 |
The given chemical transformation,
CH3CH2Cl (g) + H2O(g) ? CH3CH2OH(g) + HCl(g) (100 °C)
a)Calculation of the value of ?rHº
Formula,
?rHº = ??rHº(Products) - ? ?Hº(Reactants)
?rHº = [?rHº(CH3CH2OH(g)) + ?rHº (HCl(g))] –[ ?rHº(CH3CH2Cl (g)) + ?rHº(H2O(g))]
Substituting all the known values from Appendix A,
?rHº = [(-234.8) + (-92.31)] –[ (-261.90) + (-241.80)]
?rHº = [-327.11]-[-503.70]
?rHº = -176.59 kJ
?rHº = -176.6 kJ
?rHº = -176.6 x 1000 J
?rHº = -176600 J.
===========xxxxxxxx=========xxxxxxxxxxxx=====
b. Calculation of ?rSº, ?surroundingsSº and ?universeSº.
i) Calculation of ?rSº,
Formula,
?rSº = ??rSº(Products) - ? ?Sº(Reactants)
?rSº = [?rSº(CH3CH2OH(g)) + ?rSº (HCl(g))] –[ ?rSº(CH3CH2Cl (g)) + ?rSº(H2O(g))]
Substituting all the known values from Appendix A,
?rSº = [(281.6) + (186.91)] –[ 268.4 + 188.7]
?rSº = [468.51]-[457.1]
?rSº = 11.41 J.K-1.
ii) Calculating ?surroundingsSº and ?universeSº
So far we got, ?rHº = -176600 J and ?rSº = 11.41 J.K-1
i.e. Standard enthalpy change is –ve and standard entropy change is +ve and hence ?rGº will be –ve at all temperature and reaction will be spontaneous.
For non-isolated spontaneous process ,
?rSº(total)= ?rSº(system) + ?rSº(surrounding) > o
Hence, we must have, ?rSº(surrounding) > o.
And also ?universeSº > 0.
======================================
c. Calculation of ?rGº for this reaction at 100 °C
We have, ?rHº = -176600 J and ?rSº = 11.41 J.K-1, T =100 °C = 373.15 K
Formula,
?rGº = ?rHº -T. ?rSº……………..(1)
?rGº = -176600 – 373.15 X 11.41
?rGº = =-176600 – 4257.64
?rGº = - 180857.64 J
?rGº = -180.857 kJ
=================================================
d)
i) At 100 oC we have, ?rGº = -180.857 kJ i.e. –ve . Yes, this reaction spontaneous at 100 oC .
Lowering the temperature to 50 oC will have no effect on the position of the equilibrium as we can see from eq.1 that at all temperature ?rGº will be –ve as ?rHº is -ve and ?rSº is +ve .
e. Calculation for KP value of the reaction.
?rGº , and Kp related by equation,
?rGº = -RT ln(Kp)
Substitute known values, ?rGº = -180857.64 J, T = 373.15 K, R= 8.314 J.K-1.mol-1.
-180857.64 = -8.314 x 373.15 x ln(Kp)
ln(Kp) = -180857.64 / -31102.37
ln(Kp) =58.3
Kp =e58.3
Kp =2.07 x 1025 .
===========xxxxxxxxxxx==================xxxxxxxxxxxxxxx=========
Get Answers For Free
Most questions answered within 1 hours.