Given the values of ΔH∘rxn, ΔS∘rxn, and T below, determine ΔSuniv.
Part A
ΔH∘rxn=− 89 kJ , ΔSrxn=− 150 J/K , T= 310 K
Express your answer using two significant figures.
Part B
ΔH∘rxn=− 89 kJ , ΔSrxn=− 150 J/K , T= 758 K
Express your answer using one significant figure.
Part C
ΔH∘rxn=+ 89 kJ , ΔSrxn=− 150 J/K , T= 310 K
Express your answer using two significant figures.
Part D
ΔH∘rxn=− 89 kJ , ΔSrxn=+ 150 J/K , T= 403 K
Express your answer using two significant figures.
ΔSsurroundings = -ΔH∘rx/T
ΔSuniv = ΔSsys + ΔSsurr
ΔSsys = ΔSrxn
Part A
ΔSsys = - 150 J/K
ΔSsurr = 89 x 10^3 / 310 = 287 J/K
ΔSuniv = - 150 + 287 = 137 J/K
ΔSuniv = 140 J/K
Part B
ΔSsys = - 150 J/K
ΔSsurr = 89 x 10^3 / 758 = 117.4 J/K
ΔSuniv = - 30 J/K
Part C
ΔSsys = - 150 J/K
ΔSsurr = - 89 x 10^3 / 310 = - 287 J/K
ΔSuniv = - 440 J/K
Part D
ΔH∘rxn=− 89 kJ , ΔSrxn=+ 150 J/K , T= 403 K
ΔSsys = 150 J/K
ΔSsurr = 89 x 10^3 / 403 = 221 J/K
ΔSuniv = 370 J/K
please rate my answer
Get Answers For Free
Most questions answered within 1 hours.