Question

Constants | Periodic Table The gas-phase reaction of NO with F2 to form NOF and F...

Constants | Periodic Table The gas-phase reaction of NO with F2 to form NOF and F has an activation energy of Ea = 6.30 kJ/mol and a frequency factor of A = 6.00×108 M−1⋅s−1 . The reaction is believed to be bimolecular: NO(g)+F2(g)→NOF(g)+F(g)

What is the rate constant at 537 ∘C ? Express your answer to three significant digits with the appropriate units. For compound units, place a multiplication dot between units (e.g. J⋅mol−1⋅K−1).

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The gas-phase reaction of NO with F2 to form NOF and F has an activation energy...
The gas-phase reaction of NO with F2 to form NOF and F has an activation energy of Ea = 6.30 kJ/mol and a frequency factor of A = 6.00×108M−1⋅s−1 . The reaction is believed to be bimolecular: NO(g)+F2(g)→NOF(g)+F(g) What is the rate constant at 695 ∘C ? Express your answer to three significant digits with the appropriate units. For compound units, place a multiplication dot between units (e.g. J⋅mol−1⋅K−1). (I got 2.74*10^8 M-1s-1 but it is wrong. I got a...
1) Express your answer as a molecular formula. a) Use the data below to calculate the...
1) Express your answer as a molecular formula. a) Use the data below to calculate the heat of hydration of lithium chloride. b) Calculate the heat of hydration of sodium chloride. Compound Lattice Energy (kJ/mol) ΔHsoln(kJ/mol) LiCl -834 -37.0 NaCl -769 +3.88 2)A certain reaction with an activation energy of 115 kJ/mol was run at 485 K and again at 505 K . What is the ratio of f at the higher temperature to f at the lower temperature? Express...
There are several factors that affect the rate of a reaction. These factors include temperature, activation...
There are several factors that affect the rate of a reaction. These factors include temperature, activation energy, steric factors (orientation), and also collision frequency, which changes with concentration and phase. All the factors that affect reaction rate can be summarized in an equation called the Arrhenius equation: k=Ae−Ea/RT where k is the rate constant, A is the frequency factor, Ea is the activation energy, R=8.314 J/(mol⋅K) is the universal gas constant, and T is the absolute temperature. __________________________________________________ A certain...
The gas-phase association reaction between F2 and IF5 is first-order in each of the reactants. The...
The gas-phase association reaction between F2 and IF5 is first-order in each of the reactants. The energy of activation for the reaction is 58.6 kJ mol−1. At 65°C the rate constant is 7.84 ✕ 10−3 kPa−1 s−1. Calculate the entropy of activation at 65°C. Please show all work and report answer in J/k*mol to multiple sig figs.
Constants | Periodic Table Learning Goal: To understand how standard enthalpy of reaction is related to...
Constants | Periodic Table Learning Goal: To understand how standard enthalpy of reaction is related to the standard heats of formation of the reactants and products. The standard enthalpy of reaction is the enthalpy change that occurs in a reaction when all the reactants and products are in their standard states. The symbol for the standard enthalpy of reaction is ΔH∘rxn, where the subscript "rxn" stands for "reaction." The standard enthalpy of a reaction is calculated from the standard heats...
A certain reaction has an activation energy of 64.0 kJ/mol and a frequency factor of A1...
A certain reaction has an activation energy of 64.0 kJ/mol and a frequency factor of A1 = 5.70×1012 M−1s−1 . What is the rate constant, k , of this reaction at 20.0 ∘C ? Express your answer with the appropriate units. Indicate the multiplication of units explicitly either with a multiplication dot (asterisk) or a dash. Part B An unknown reaction was observed, and the following data were collected: T (K ) k (M−1⋅s−1 ) 352 109 426 185 Determine...
Rate constants for the reaction NO2(g)+CO(g)?NO(g)+CO2(g) are 1.3M?1s?1 at 700 K and 23.0M?1s?1 at 800 K....
Rate constants for the reaction NO2(g)+CO(g)?NO(g)+CO2(g) are 1.3M?1s?1 at 700 K and 23.0M?1s?1 at 800 K. Part A What is the value of the activation energy in kJ/mol? Ea = 134   kJ/mol   SubmitMy AnswersGive Up Correct Part B What is the rate constant at 770K ? Express your answer using two significant figures. k =   /(M?s)
The gas phase reaction 2 N2O5(g) ? 4 NO2(g) + O2(g) has an activation energy of...
The gas phase reaction 2 N2O5(g) ? 4 NO2(g) + O2(g) has an activation energy of 103 kJ/mol, and the first order rate constant is 3.77×10-5 min-1 at 272 K. What is the rate constant at 292 K?
Diatomic and atomic fluorine gas exists in equilibrium according to the following reaction F2(g) -><- 2F(g)...
Diatomic and atomic fluorine gas exists in equilibrium according to the following reaction F2(g) -><- 2F(g) (a) The standard molar Gibbs free energy of reaction, ∆rG at 298 K is 5.25 kJ mol−1 at 298 K. Use this information to calculate the equilibrium constant for the reaction. (b) Calculate the extent of reaction, ξ, for this reaction if 1.0 mole of F2 and 0.0 moles of F are present initially. The equilibrium pressure is 1.3 bar.
A first order, liquid-phase reaction A ?products, is conducted in a 2000 L CSTR. The feed...
A first order, liquid-phase reaction A ?products, is conducted in a 2000 L CSTR. The feed contains pure A, at a rate of 300 L min-1 , with an inlet concentration of 4.0 mol L-1 . The following additional data are available: cP = 3.5 J g-1 K-1; ? = 1.15 g cm-3 ; ?HRA = -50 kJ mol-1 (you can assume that these values are constants) kA = A e-EA/RT = 2.4 x 1015e-12,000/T min-1 , with T in...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT