Question

BACKROUND: E=E∘−(0.0592/n)logQ The reaction quotient has the usual form Q=[products]^x/[reactants]^y A table of standard reduction potentials...

BACKROUND:

E=E∘−(0.0592/n)logQ

The reaction quotient has the usual form

Q=[products]^x/[reactants]^y

A table of standard reduction potentials gives the voltage at standard conditions, 1.00 M for all solutions and 1.00 atm for all gases. The Nernst equation allows for the calculation of the cell potential E at other conditions of concentration and pressure.

-------------------------------------

For the reaction

2Co3+(aq)+2Cl−(aq)→2Co2+(aq)+Cl2(g).  E=0.483 V

what is the cell potential at 25 ∘C if the concentrations are [Co3+]= 0.592 M , [Co2+]= 0.866 M , and [Cl−]= 0.704 M and the pressure of Cl2 is PCl2= 6.00 atm ?

Express your answer with the appropriate units.

Homework Answers

Answer #1

2Co3+(aq)+2Cl−(aq)→2Co2+(aq)+Cl2(g).  E∘=0.483 V

Ecell = E° - 0.0592/n * log(Q)

note that n = number of electrons transferred:

Co3+ + e- --> Co+2; 1 electron, but it has 2 coeff so 1x2 = 2 electrons, the same is true for Cl

n = 2 electrons

Ecell = E° - 0.0592/n * log(Q)

Ecell = 0.483 - 0.0592/2 * log(Q)

Calculate Q

Q = [products]/[reactants]

Q = [Co+2]^2P-Cl2 / ([Co+3]^2[Cl-]^2)

substitute data

Q = (0.866^2)(6)/((0.592^2)(0.704^2))

Q = 25.905

substitute

Ecell = 0.483 - 0.0592/2 * log(25.905)

Ecell = 0.4411 V

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
For the reaction 2Co3+(aq)+2Cl−(aq)→2Co2+(aq)+Cl2(g). E∘=0.483 V what is the cell potential at 25 ∘C if the...
For the reaction 2Co3+(aq)+2Cl−(aq)→2Co2+(aq)+Cl2(g). E∘=0.483 V what is the cell potential at 25 ∘C if the concentrations are [Co3+]= 0.228 M , [Co2+]= 0.732 M , and [Cl−]= 0.816 M and the pressure of Cl2 is PCl2= 6.70 atm ?
Part A For the reaction 2Co3+(aq)+2Cl−(aq)→2Co2+(aq)+Cl2(g). E∘=0.483 V what is the cell potential at 25 ∘C...
Part A For the reaction 2Co3+(aq)+2Cl−(aq)→2Co2+(aq)+Cl2(g). E∘=0.483 V what is the cell potential at 25 ∘C if the concentrations are [Co3+]= 0.469 M , [Co2+]= 0.448 M , and [Cl−]= 0.850 M and the pressure of Cl2 is PCl2= 5.80 atm ? Express your answer with the appropriate units.
1) For the reaction 2Co3+(aq)+2Cl−(aq)→2Co2+(aq)+Cl2(g). E∘=0.483 V what is the cell potential at 25 ∘C if...
1) For the reaction 2Co3+(aq)+2Cl−(aq)→2Co2+(aq)+Cl2(g). E∘=0.483 V what is the cell potential at 25 ∘C if the concentrations are[Co3+]= 0.685 M , [Co2+]= 0.417 M , and [Cl−]= 7.70×10−2M and the pressure of Cl2 is PCl2= 6.60 atm ? 2)Part A At 63.0 ∘C , what is the maximum value of the reaction quotient, Q , needed to produce a non-negative E value for the reaction SO42−(aq)+4H+(aq)+2Br−(aq)⇌Br2(aq)+SO2(g)+2H2O(l) In other words, what is Q when E=0 at this temperature?Express your answer...
Using the reaction and the E∘ given below 2Co3+(aq)+2Cl−(aq)→2Co2+(aq)+Cl2(g)      E∘=0.46 V what is the cell potential at...
Using the reaction and the E∘ given below 2Co3+(aq)+2Cl−(aq)→2Co2+(aq)+Cl2(g)      E∘=0.46 V what is the cell potential at 25 ∘C if the concentrations are [Co3+]= 3.10×10−2M , [Co2+]= 0.732 M , and [Cl−]= 0.544 M and the pressure of Cl2 is PCl2= 9.80 atm ? 2)At 57.0 ∘C , what is the maximum value of Q needed to produce a non-negative E value for the reaction SO4^2−(aq)+4H+(aq)+2Br−(aq)⇌Br2(aq)+SO2(g)+2H2O(l) In other words, what is Q when E=0 at this temperature?
Consider the reaction Mg(s)+Fe2+(aq)→Mg2+(aq)+Fe(s) at 69 ∘C , where [Fe2+]= 3.00 M and [Mg2+]= 0.210 M...
Consider the reaction Mg(s)+Fe2+(aq)→Mg2+(aq)+Fe(s) at 69 ∘C , where [Fe2+]= 3.00 M and [Mg2+]= 0.210 M . Part A What is the value for the reaction quotient, Q, for the cell? Part B What is the value for the temperature, T, in kelvins? Part C What is the value for n? Part D Calculate the standard cell potential for Mg(s)+Fe2+(aq)→Mg2+(aq)+Fe(s) Part E For the reaction 2Co3+(aq)+2Cl−(aq)→2Co2+(aq)+Cl2(g).  E∘=0.483 V what is the cell potential at 25 ∘C if the concentrations are [Co3+]=...
Use the standard reduction potentials shown here to answer the questions. Reduction half-reaction E∘ (V) Cu2+(aq)+2e−→Cu(s)...
Use the standard reduction potentials shown here to answer the questions. Reduction half-reaction E∘ (V) Cu2+(aq)+2e−→Cu(s) 0.337 2H+(aq)+2e−→H2(g) 0.000 A copper, Cu(s), electrode is immersed in a solution that is 1.00 M in ammonia, NH3, and 1.00 M in tetraamminecopper(II), [Cu(NH3)4]2+. If a standard hydrogen electrode is used as the cathode, the cell potential, Ecell, is found to be 0.073 V at 298 K. Part A Based on the cell potential, what is the concentration of Cu2+ in this solution?...
± The Nernst Equation and pH Sulfuric acid is a very strong acid that can act...
± The Nernst Equation and pH Sulfuric acid is a very strong acid that can act as an oxidizing agent at high concentrations (very low pH, or even negative pH values). Under standard conditions, sulfuric acid has a low reduction potential, SO42−(aq)+4H+(aq)+2e−⇌SO2(g)+2H2O(l),   +0.20 V which means it cannot oxidize any of the halides F2, Cl2, Br2, or I2. If the H+ ion concentration is increased, however, the driving force for the sulfuric acid reduction is also increased according to Le Châtelier's...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT