Question

A student wishes to prepare 125-mL of a 0.155 M manganese(II) bromide solution using solid manganese(II)...

A student wishes to prepare 125-mL of a 0.155 M manganese(II) bromide solution using solid manganese(II) bromide, a 125-mL volumetric flask, and deionized water. (a) How many grams of manganese(II) bromide must the student weigh out?

(b) Which of the following would NOT be an expected step in the procedure used by the student?

1)Add 125 mL of deionized water to the flask.

2)Carefully transfer the salt sample to the volumetric flask.

3)Carefully add water until the bottom of the meniscus sits on the mark on the neck of the flask.

Homework Answers

Answer #1

First calculate the number of moles of MnBr2

Number of moles = molarity * volume in L

= 0.155 * 125/1000

= 0.0194 Moles MnBr2

Amount in g = number of mole s* molar mass

= 0.0194 Moles MnBr2* 214.746 g/mol

= 4.161 g MnBr2

(a)Thus 4.161 g MnBr2 manganese(II) bromide must the student weigh out.

(b) the following would NOT be an expected step in the procedure used by the student:

1)Add 125 mL of deionized water to the flask. Because in doing so the volume of solution was greater than 125 ml

To make solution first add the weight amount in volumetric flask and then add water up to mark

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1. You need to make an aqueous solution of 0.241 M zinc bromide for an experiment...
1. You need to make an aqueous solution of 0.241 M zinc bromide for an experiment in lab, using a 300 mL volumetric flask. How much solid zinc bromide should you add? 2.How many milliliters of an aqueous solution of 0.132 M calcium chloride is needed to obtain 8.00 grams of the salt? 1. In the laboratory you dissolve 22.3 g of silver nitrate in a volumetric flask and add water to a total volume of 250 mL. What is...
You need to make an aqueous solution of 0.162 M iron(II) sulfate for an experiment in...
You need to make an aqueous solution of 0.162 M iron(II) sulfate for an experiment in lab, using a 250 mL volumetric flask. How much solid iron(II) sulfate should you add? ___ grams How many milliliters of an aqueous solution of 0.207 M copper(II) acetate is needed to obtain 7.15 grams of the salt? ____mL In the laboratory you dissolve 24.2 g of lead nitrate in a volumetric flask and add water to a total volume of 125 . mL....
A student pipetted 25.00 mL of a stock solution that was 0.1063 M HCl into a...
A student pipetted 25.00 mL of a stock solution that was 0.1063 M HCl into a 100.00 mL volumetric flask and diluted the solution to the volumetric flask calibration mark with deionized water. Calculate the concentration of the diluted solution.
In the laboratory, a student adds 24.0 g of ammonium phosphate to a 125 mL volumetric...
In the laboratory, a student adds 24.0 g of ammonium phosphate to a 125 mL volumetric flask and adds water to the mark on the neck of the flask. Calculate the concentration (in mol/L) of ammonium phosphate, the ammonium ion and the phosphate ion in the solution.
What is the concentration of the Vitamin C standard solution that you are making? Using the...
What is the concentration of the Vitamin C standard solution that you are making? Using the analytical balance in the instrument room, carefully weigh out about 125 mg of Vitamin C and place it in a 100-mL beaker in approximately 50 mL of water. It is not necessary for you to have exactly 125 mg, but it is important for you to know exactly how many mg you do have, and to make sure none of it is lost in...
1- A student weighs out a 11.8 g sample of copper(II) acetate, transfers it to a...
1- A student weighs out a 11.8 g sample of copper(II) acetate, transfers it to a 300 mL volumetric flask, adds enough water to dissolve it and then adds water to the 300 mL tic mark. What is the molarity of Cu(CH3COO)2 in the resulting solution? 2- How many moles of potassium hydroxide, KOH, are there in 257 mL of a 0.158 M solution? 3- A student wants to prepare a solution of zinc acetate with a known molarity. How...
Procedure Experiment 1: Standardize an NaOH Solution Using Benzoic Acid as Primary Standard Part 1: Prepare...
Procedure Experiment 1: Standardize an NaOH Solution Using Benzoic Acid as Primary Standard Part 1: Prepare the NaOH Solution Take a 250 mL volumetric flask from the Containers shelf and a balance from the Instruments shelf and place them on the workbench. Zero the mass of the volumetric flask on the balance. Take sodium hydroxide from the Materials shelf and add 1 g to the flask. Record the mass from the balance display. Place the volumetric flask on the workbench....
Procedure Preparation of Reagents 1. Starch indicator will be provided 2. Solid potassium iodide will be...
Procedure Preparation of Reagents 1. Starch indicator will be provided 2. Solid potassium iodide will be available 3. 0.3 M H2SO4 will be available 4. ~0.04 M Sodium thiosulfate solution will be provided. You should be able to complete the experiment with 250 mL of this solution. 5. Preparation of 0.01M KIO3 Solution: a. Accurately weigh approximately 0.535 g of solid reagent and record the mass to 4 decimal places. b. Deliver the KIO3 to a 250 mL volumetric flask...
Procedure Reaction 1: Dissolving the Copper 1. Obtain a clean, dry, glass centrifuge tube. 2. Place...
Procedure Reaction 1: Dissolving the Copper 1. Obtain a clean, dry, glass centrifuge tube. 2. Place a piece of copper wire in a weighing paper, determine the mass of the wire and place it in the centrifuge tube. The copper wire should weigh less than 0.0200 grams. 3. In a fume hood, add seven drops of concentrated nitric acid to the reaction tube so that the copper metal dissolves completely. Describe your observations in the lab report. (Caution, Concentrated nitric...