Question

A piece of titanium metal with a mass of 20.8 g is heated in boiling water...

A piece of titanium metal with a mass of 20.8 g is heated in boiling water to 99.5 0C and then dropped into a coffee cup calorimeter containing 75.0 g of water at 21.7 0C.When thermal equilibum is reached, the final temperature is 14.30C.Calculate the specific heat capacity of titanium. ( Specific Heat Capacity of H2O (l) =4.184 J g-1 0C-1)

Homework Answers

Answer #1

Lets see the formula at thermal equilibrium

Mass of titanium specific heat capacity (change in temperature) + mass of water specific heat capacity of water (change in temperature) = 0

20.8 g specific heat capacity (14.30 C -99.50 C) + 75.0 g 4.183 J/g.0 C (14.30 C -21.70 C) = 0

-1772.16 specific heat capacity -2321.56= 0

specific heat capacity = (-2321.56) / (-1772.16)

= 1.31 J g-1.0C-1

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1. A 74.2-g piece of metal is heated to 89.55 degrees C and dropped into 52.0...
1. A 74.2-g piece of metal is heated to 89.55 degrees C and dropped into 52.0 g of water at 23.22 degrees C in a calorimeter with the heat capacity of 41.0 J/C . The final temperature of the system is 27.60 degrees C. a) Assuming that the metal does not react with water and Cs(H2O) = 4.18 J/g*C , calculate the specific heat capacity of the metal in J/g*C b) Most metals have the same molar heat capacity of...
A piece of lead with a mass of 29.3 g was heated to 97.85-degrees C and...
A piece of lead with a mass of 29.3 g was heated to 97.85-degrees C and then dropped into 16.0 g of water at 22.80-degrees C. The final temp was 26.61-degrees C. Calculate the specific heat capacity of lead from these data. (The specific heat capacity of liquid water is 4.184 J/g K).
A 35.7 gram sample of iron (heat capacity 0.45 g/J°C) was heated to 99.10 °C and...
A 35.7 gram sample of iron (heat capacity 0.45 g/J°C) was heated to 99.10 °C and placed into a coffee cup calorimeter containing 42.92 grams of water initially at 15.15 °C. What will the final temperature of the system be? (Specific heat of water is 4.184 J/g°C). Please show work.
a 25.0g piece of aluminum (molar heat capacity of 24.03 J/g degrees Celsius) is heated to...
a 25.0g piece of aluminum (molar heat capacity of 24.03 J/g degrees Celsius) is heated to 82.4 degrees Celsius and dropped into a calorimeter containing water (specific heat capacity of water is 4.18 J/g degrees Celsius) initially at 22.3 degrees Celsius. The final temperature of the water is 24.98 degrees Celsius. Calculate the mass of water in the calorimeter.
A 72.5 gram piece of magnesium is heated to a temperature of 98.90ºC. The metal is...
A 72.5 gram piece of magnesium is heated to a temperature of 98.90ºC. The metal is then dropped into 40.0 grams of water at a temperature of 18.50ºC inside a perfect calorimeter. Calculate the final temperature of the water in the calorimeter. The specific heat capacity for magnesium is Cp = 1.020 J/g·ºC. Tfinal = ºC
A student doing an experiment pours 0.500 kg of heated metal whose temperature is 98.0 oC...
A student doing an experiment pours 0.500 kg of heated metal whose temperature is 98.0 oC into a 0.356 kg aluminum calorimeter cup containing 0.418 kg of water at 28.0 °C. The mixture (and the cup) comes to thermal equilibrium at 38.0 °C. The specific heat of the metal is ________ J/kg oC. (specific heat of aluminum = 900 J/kg oC, specific heat of water = 4186 J/kg oC)
An insulated aluminum calorimeter vessel of 150 g mass contains 300 g of liquid nitrogen boiling...
An insulated aluminum calorimeter vessel of 150 g mass contains 300 g of liquid nitrogen boiling at 77 K. A metal block at an initial temperature of 303 K is dropped into the liquid nitrogen. It boils away 15.8 g of nitrogen in reaching thermal equilibrium. The block is then withdrawn from the nitrogen and quickly transferred to a second insulated copper calorimeter vessel of 200 g mass containing 500 g of water at 30.1 degrees celsius. The block coolds...
1. A 78.0 g piece of metal at 89.0°C is placed in 125 g of water...
1. A 78.0 g piece of metal at 89.0°C is placed in 125 g of water at 21.0°C contained in a calorimeter. The metal and water come to the same temperature at 27.0°C. - How much heat (in J) did the metal give up to the water? (Assume the specific heat of water is 4.18 J/g·°C across the temperature range.) - What is the specific heat (in J/g·°C) of the metal? 2. A 0.529 g sample of KCl is added...
A piece of unknown material of mass 0.15 kg is heated to 110°C without melting and...
A piece of unknown material of mass 0.15 kg is heated to 110°C without melting and then placed in a calorimeter containing 0.76 kg of water initially at 14.5°C. The system reaches an equilibrium temperature of 20.8°C a)  What is the specific heat of the unknown material, in units of J/(kg⋅°C)? The specific heat of water is 4.186 × 103 J/(kg⋅°C).
Calculate the specific heat of a metal from the following experimental data. 75.0 ml cold water...
Calculate the specific heat of a metal from the following experimental data. 75.0 ml cold water is taken in a calorimeter. The initial temp of the water in the calorimeter is 21.2 degrees C. To the calorimeter containing cold water 29.458 g metal at 98.9 degrees C is added. The final temperature of the contents of the calorimeter is measured to be 29.5 degreesC. (Given: density of water= 1.00 g/ml, specific heat of water= 4.184 J. G. -1 degrees C...