Question

Nitrogen and hydrogen combine at a high temperature, in the presence of a catalyst, to produce...

Nitrogen and hydrogen combine at a high temperature, in the presence of a catalyst, to produce ammonia.

N2(g)+3H2(g)⟶2NH3(g)
Assume 0.230 mol N2 and 0.758 mol H2 are present initially.PLEASE SHOW steps!!

1)After complete reaction, how many moles of ammonia NH3 are produced?

2)How many moles of H2 remain?


3)How many moles of N2 remain?


4)What is the limiting reactant?
nitrogen or
hydrogen

Homework Answers

Answer #1

1)

Balanced chemical equation is:

N2 + 3 H2 ---> 2 NH3 +

1 mol of N2 reacts with 3 mol of H2

for 0.23 mol of N2, 0.69 mol of H2 is required

But we have 0.758 mol of H2

so, N2 is limiting reagent

we will use N2 in further calculation

According to balanced equation

mol of NH3 formed = (2/1)* moles of N2

= (2/1)*0.23

= 0.46 mol

Answer: 0.460 mol

2)

According to balanced equation

mol of H2 reacted = (3/1)* moles of N2

= (3/1)*0.23

= 0.69 mol

mol of H2 remaining = mol initially present - mol reacted

mol of H2 remaining = 0.758 - 0.69

mol of H2 remaining = 6.8*10^-2 mol

Answer: 0.0680 mol

3)

N2 is limiting reagent

So, no N2 is present

Answer: 0.0 mol

4)

N2 is limiting reagent

Answer: Nitrogen

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Nitrogen and hydrogen combine at high temperature, in the presence of a catalyst, to produce ammonia....
Nitrogen and hydrogen combine at high temperature, in the presence of a catalyst, to produce ammonia. N2 (g) +3 H2 (g) -------------------> 2 NH3 (g) Assume 0.240 mol of N2 and 0.772 mol of H2 are present initially. 1) After complete reaction, how many moles of ammonia are produced? 2) How many moles of H2 remain? 3) How many moles of N2 remain? 4) What is the limiting reactant?
Nitrogen and hydrogen combine at high temperature, in the presence of a catalyst, to produce ammonia....
Nitrogen and hydrogen combine at high temperature, in the presence of a catalyst, to produce ammonia. N2(g) + 3H2(g) --> 2NH3(g) assume 4 molecules of nitrogen and 9 molecules of hydrogen are present. After complete reaction, how many molecules of ammonia are produced? How many molecules of H2 remain? How many molecules of N2 remain? What is the limiting reactant? hydrogen or nitrogen Please answer all questions and explain this is due today thank you :)
Consider the following balanced reaction between hydrogen and nitrogen to form ammonia: 3H2(g) + N2(g)→2NH3(g) How...
Consider the following balanced reaction between hydrogen and nitrogen to form ammonia: 3H2(g) + N2(g)→2NH3(g) How many moles of NH3 can be produced from 24.0 mol of H2 and excess N2? Express the number of moles to three significant figures.
hydrogen gas, H2, reacts with nitrogen gas,N2, to form ammonia gas , NH3 according to the...
hydrogen gas, H2, reacts with nitrogen gas,N2, to form ammonia gas , NH3 according to the equation... 3H2+N2 --->2NH3 1.how many grams of NH3 can be produced from 3.42 mol of N2 and excess H2 2. how many grams of H2 are needed to produce 14.93 g of NH3 ? 3. How many molecules (not moles) of NH3 are produced from 6.04*10^-4 g of H2 ?
Hydrogen gas, H2, reacts with nitrogen gas, N2, to form ammonia gas, NH3, according to the...
Hydrogen gas, H2, reacts with nitrogen gas, N2, to form ammonia gas, NH3, according to the equation 3H2(g)+N2(g)→2NH3(g) 1. How many molecules (not moles) of NH3 are produced from 5.25×10−4 g of H2 ?
Ammonia (NH3) is produced in the Haber process by passing nitrogen (N2) with hydrogen over an...
Ammonia (NH3) is produced in the Haber process by passing nitrogen (N2) with hydrogen over an iron catalyst at high temperature and pressure. N2(g) + 3 H2(g) --> 2 NH3(g) How many grams of ammonia can be prepared by reaction of 9.405 g of nitrogen with 2.413 g of hydrogen?
n2 +3h2--2nh3.assume 0.280 monofilament n2 and 0.886mol of h2 are present initially. after completion how many...
n2 +3h2--2nh3.assume 0.280 monofilament n2 and 0.886mol of h2 are present initially. after completion how many moles of h2 remains how many moles of ammonia are produced? how many moles of n2 remain? what is the limiting reactant?
In the Haber process, ammonia is synthesized from nitrogen and hydrogen: N2(g) + 3H2(g) → 2NH3(g)...
In the Haber process, ammonia is synthesized from nitrogen and hydrogen: N2(g) + 3H2(g) → 2NH3(g) ΔG° at 298 K for this reaction is -33.3 kJ/mol. The value of ΔG at 298 K for a reaction mixture that consists of 1.7 atm N2, 3.2 atm H2, and 0.85 atm NH3 is a) -139.6 b) 0.43 c) -4.63 × 103 d) -44.1 e) -1.08 × 104
Ammonia, NH3, is produced from the reaction of gaseous nitrogen and hydrogen at high temperatures. 3...
Ammonia, NH3, is produced from the reaction of gaseous nitrogen and hydrogen at high temperatures. 3 H2 (g) + N2 (g)  → 2 NH3 (g) For the reaction of 3.77 g of H2 with 8.66 g of N2, you determined that 21.2 g and 10.5 g of ammonia could be produced, respectively. In the laboratory, you reacted these masses of H2 and N2 and collected 7.70 g of NH3. What is the percentage yield of this reaction to the correct number...
100 g of nitrogen gas reacts with hydrogen gas to produce 40g of ammonia gas according...
100 g of nitrogen gas reacts with hydrogen gas to produce 40g of ammonia gas according to the equation given below: N2(g) + 3H2(g) ⇋ 2NH3(g) Calculate the percentage yield of ammonia
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT