Question

the specific heat of a metal object is .21 cal/g C. The metal is heated to...

the specific heat of a metal object is .21 cal/g C. The metal is heated to 96C then transferred to a calorimeter contain 75g of water at 18 C. The metal and water reach a final temperature of 22C. What is the mass of the metal?

a 4g

b 38 g

300 g

75 g

19 g

Homework Answers

Answer #1

Heat Loss by metal = Heat Taken by water

+Q(water) = -Q(metal)

Q = mcΔT. ΔT = Tf - Ti

Initial temperature of metal, Ti = 96 ºC

Tf = 22 ºC

C = specific heat of metal = .21 cal/g C

Mass of metal be ‘a’ gram

Qm = a g x .21 cal/g C x (22 – 96) ºC

water, V = 75 mL = 75 g

Initial temperature of water, Ti = 18 ºC

Tf = 22 ºC

C = specific heat of copper = 1 cal/g°C

Qw = 75 g x 1 cal/g C x (18 – 22) ºC

+Q(water) = -Q(copper)

75 g x 1 cal/g C x (22 – 18) ºC = - [a g x .21 cal/g C x (22 – 96) ºC]

300 = 15.54 x a

a = 19 g

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 48.2 g sample of a metal is heated to 95.8 degrees C and placed in...
A 48.2 g sample of a metal is heated to 95.8 degrees C and placed in a coffee-cup calorimeter containing 79.0 g of water at a temperature of 18.5 degrees C. After the metal cools, the final temperature of the metal and water is 22.8 degrees C. Calculate the specific heat capacity of the metal, assuming that no heat escapes to the surroundings or is transferred to the calorimeter.
In an experiment, 22.5 g of metal was heated to 98.0°C and then quickly transferred to...
In an experiment, 22.5 g of metal was heated to 98.0°C and then quickly transferred to 150.0 g of water in a calorimeter. The initial temperature of the water was 27.0°C, and the final temperature after the addition of the metal was 32.5°C. Assume the calorimeter behaves ideally and does not absorb or release heat. What is the value of the specific heat capacity (in J/g•°C) of the metal?
In an experiment, 25.5 g of metal was heated to 98.0°C and then quickly transferred to...
In an experiment, 25.5 g of metal was heated to 98.0°C and then quickly transferred to 150.0 g of water in a calorimeter. The initial temperature of the water was 21.0°C, and the final temperature after the addition of the metal was 32.5°C. Assume the calorimeter behaves ideally and does not absorb or release heat. What is the value of the specific heat capacity (in J/g•°C) of the metal?
In an experiment, 26.0 g of metal was heated to 98.0°C and then quickly transferred to...
In an experiment, 26.0 g of metal was heated to 98.0°C and then quickly transferred to 150.0 g of water in a calorimeter. The initial temperature of the water was 20.5°C, and the final temperature after the addition of the metal was 32.5°C. Assume the calorimeter behaves ideally and does not absorb or release heat. What is the value of the specific heat capacity (in J/g•°C) of the metal? _________________ J/g•°C
A calorimeter made of copper (c=0.0923 cal/g-C°) of mass 300 g contains 450 grams of water....
A calorimeter made of copper (c=0.0923 cal/g-C°) of mass 300 g contains 450 grams of water. The container is initially at room temperature, 20°C. A 1 kg block of metal is heated to 100°C and placed in the water in the calorimeter. The final temperature of the system is 40°C. What is the specific heat of the metal?    A. 0.159 kcal/kg-C °    B. 0.591 kcal/kg-C° C. 0.519 kcal/kg-C° D. 0.915 kcal/kg-C°  
In an experiment, 22.0 g of metal was heated to 98.0°C and then quickly transferred to...
In an experiment, 22.0 g of metal was heated to 98.0°C and then quickly transferred to 150.0 g of water in a calorimeter. The initial temperature of the water was 27.0°C, and the final temperature after the addition of the metal was 32.5°C. Assume the calorimeter behaves ideally and does not absorb or release heat.
If you were to dump 45.0 g of copper metal (specific heat = 0.092 cal/g°C) at...
If you were to dump 45.0 g of copper metal (specific heat = 0.092 cal/g°C) at 115°C into 75.0 g of water at 22.3°C, what temperature will the final mixture be?
A 6.40 g sample of iron (specific heat capacity = 0.451 J/g*C) is placed in a...
A 6.40 g sample of iron (specific heat capacity = 0.451 J/g*C) is placed in a boiling water bath until the temperature of the metal is 100.0*C. The metal is quickly transferred to 119.0g of water at 25.0*C in a calorimeter (specific heat capacity of water = 4.18 J/g*C). Determine the final temperature of the water in the calorimeter (3 significant figures).
A 6.40 g sample of iron (specific heat capacity =0.451 J/g*C) is placed in a boiling...
A 6.40 g sample of iron (specific heat capacity =0.451 J/g*C) is placed in a boiling water bath until the temperature of the metal is 100.0*C. The metal is quickly transferred to 119.0g of water at 25.0*C in a calorimeter (specific heat capacity of water = 4.18 J/g*C). Determine the final temperature of the water in the calorimeter (3 significant figures).
An unknown metal of mass 0.280 kg is heated to 160.0°C and dropped in an aluminum...
An unknown metal of mass 0.280 kg is heated to 160.0°C and dropped in an aluminum calorimeter of mass 0.250 kg that contains 0.170 kg of water at 30°C. The calorimeter, water, and unknown metal have a final temperature of 46.0°C. Find the specific heat of the unknown metal. Hint: you need the specific heat of water and aluminum. Use units of [J/(kg.K)] and the values in your book for the specific heat.