Question

Butane, C4H10, is a component of natural gas that is used as fuel for cigarette lighters....

Butane, C4H10, is a component of natural gas that is used as fuel for cigarette lighters. The balanced equation of the complete combustion of butane is 2C4H10(g)+13O2(g)→8CO2(g)+10H2O(l) At 1.00 atm and 23 ∘C, what is the volume of carbon dioxide formed by the combustion of 2.80 g of butane? what is the volume of CO2?The ideal gas law

PV=nRT

relates pressure P, volume V, temperature T, and number of moles of a gas, n. The gas constant R equals 0.08206 L⋅atm/(K⋅mol)or 8.3145 J/(K⋅mol). The equation can be rearranged as follows to solve for n:

n=PVRT

This equation is useful when dealing with gaseous reactions because stoichiometric calculations involve mole ratios.

Homework Answers

Answer #1

2C4H10(g)+13O2(g) ------------------> 8CO2(g)+10H2O(l)

116g                                                       352g

2.80g                                                        ?

116 g butane -----------------------> 352 g CO2

2.80 g butane ---------------------> x g CO2

x = 352 x 2.80 / 116

x = 8.50 g

CO2 mass released = 8.50 g

CO2 moles = mass / molar mass

                   = 8.50 / 44

                  = 0.193

moles = n = 0.193

T = 273 + 23 = 296 K

P = 1 atm

R = 0.0821 L-atm / mol K

ideal gas equation :

P V = n R T

1 x V = 0.193 x 0.0821 x 296

V = 4.69 L

volume of CO2 released = 4.69 L

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Butane, C4H10, is a component of natural gas that is used as fuel for cigarette lighters....
Butane, C4H10, is a component of natural gas that is used as fuel for cigarette lighters. The balanced equation of the complete combustion of butane is 2C4H10(g)+13O2(g)→8CO2(g)+10H2O(l) At 1.00 atm and 23 ∘C, what is the volume of carbon dioxide formed by the combustion of 1.60 g of butane?
Butane, C4H10, is a component of natural gas that is used as fuel for cigarette lighters....
Butane, C4H10, is a component of natural gas that is used as fuel for cigarette lighters. The balanced equation of the complete combustion of butane is 2C4H10(g)+13O2(g)→8CO2(g)+10H2O(l) At 1.01 bar and 23 ∘C, what is the volume of carbon dioxide formed by the combustion of 2.60 g of butane?
Butane, C4H10 , is a component of natural gas that is used as fuel for cigarette...
Butane, C4H10 , is a component of natural gas that is used as fuel for cigarette lighters. The balanced equation of the complete combustion of butane is 2C4H10(g)+13O2(g)→8CO2(g)+10H2O(l) At 1.00 atm and 23 ∘C , what is the volume of carbon dioxide formed by the combustion of 1.60 g of butane? Express your answer with the appropriate units. volume of CO2 =
The ideal gas law PV=nRT relates pressure P, volume V, temperature T, and number of moles...
The ideal gas law PV=nRT relates pressure P, volume V, temperature T, and number of moles of a gas, n. The gas constant Requals 0.08206 L⋅atm/(K⋅mol) or 8.3145 J/(K⋅mol). The equation can be rearranged as follows to solve for n: n=PVRT This equation is useful when dealing with gaseous reactions because stoichiometric calculations involve mole ratios. A)When heated, calcium carbonate decomposes to yield calcium oxide and carbon dioxide gas via the reaction CaCO3(s)→CaO(s)+CO2(g) What is the mass of calcium carbonate...
± Stoichiometric Relationships with Gases The ideal gas law PV=nRT relates pressure P, volume V, temperature...
± Stoichiometric Relationships with Gases The ideal gas law PV=nRT relates pressure P, volume V, temperature T, and number of moles of a gas, n. The gas constant Requals 0.08206 L⋅atm/(K⋅mol) or 8.3145 J/(K⋅mol). The equation can be rearranged as follows to solve for n: n=PVRT This equation is useful when dealing with gaseous reactions because stoichiometric calculations involve mole ratios. Part A When heated, calcium carbonate decomposes to yield calcium oxide and carbon dioxide gas via the reaction CaCO3(s)→CaO(s)+CO2(g)...
Butane, the fuel used in cigarette lighters, burns according to the equation: 2 C4H10 (g) +...
Butane, the fuel used in cigarette lighters, burns according to the equation: 2 C4H10 (g) + 13 O2 (g)  8 CO2 (g) + 10 H2O(g) H = – 5316 kJ a) Calculate the mass of oxygen that must react in order for this reaction to generate 2150 kJ of heat b) Calculate the amount of heat, including sign, that is transferred when 75.0 g of butane react completely.
Butane C4H10 is a common fuel found in cigarette lighters. When butane burns, it combines with...
Butane C4H10 is a common fuel found in cigarette lighters. When butane burns, it combines with oxygen to produce carbon dioxide and water. A student burned a 5.00-gram sample of butane. Show all calculations in solving the following problems. 1. Write the balanced equation for the combustion of butane. 2. Find the number of moles of butane in 5.00 grams. 3. Find the number of moles of oxygen that will react with 5.00 g of butane. 4. Find the number...
1.) Imagine that you have a 7.00 L gas tank and a 4.00 L gas tank....
1.) Imagine that you have a 7.00 L gas tank and a 4.00 L gas tank. You need to fill one tank with oxygen and the other with acetylene to use in conjunction with your welding torch. If you fill the larger tank with oxygen to a pressure of 155 atm , to what pressure should you fill the acetylene tank to ensure that you run out of each gas at the same time? Assume ideal behavior for all gases....
Mass C4H10 Mass O2 Mass CO2 Mass H2O 1.31 g 5.72g 11.12g 8.84g 222 mg 148mg...
Mass C4H10 Mass O2 Mass CO2 Mass H2O 1.31 g 5.72g 11.12g 8.84g 222 mg 148mg Consider the following balanced equation for the combustion of butane, a fuel often used in lighters. 2C4H10(g)+13O2(g)?8CO2(g)+10H2O(g) Complete the following table, showing the appropriate masses of reactants and products. If the mass of a reactant is provided, fill in the mass of other reactants required to completely react with the given mass, as well as the mass of each product formed. If the mass...
The system consists of reactants (10.5 g of butane gas and the stoichiometric amount of oxygen...
The system consists of reactants (10.5 g of butane gas and the stoichiometric amount of oxygen gas) placed in a diathermic cylinder sealed from the surroundings by a diathermic, freely moving, massless piston. The cylinder is placed in a huge water tank at 300.K. In the initial state, the system is in equilibrium with the surroundings at 300.K and 1.0 atm. As a result of the combustion between the reactants, the system reaches a final state that contains only carbon...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT