Question

An unknown amount of a compound with a molecular mass of 259.61 g/mol is dissolved in...

An unknown amount of a compound with a molecular mass of 259.61 g/mol is dissolved in a 10-mL volumetric flask. A 1.00-mL aliquot of this solution is transferred to a 25-mL volumetric flask and enough water is added to dilute to the mark. The absorbance of this diluted solution at 347 nm is 0.525 in a 1.000-cm cuvette. The molar absorptivity for this compound at 347 nm is ε347 = 6557 M–1 cm–1.

(a) What is the concentration of the compound in the cuvette?

(b) What is the concentration of the compound in the 10-mL flask?

(c) How many milligrams of compound were used to make the 10-mL solution?

Homework Answers

Answer #1

According to Beer Lamberts law

absorbance = molar absorptivity coefficient x path length of the cuvette x concentration of the sample

path length of the cuvette = 1 cm

molar absorptivity coefficient at 347 nm = 6557 M-1cm-1

a).

Concentration = absorbance / (molar absorptivity coefficient x path length) = 0.525/6557 = 8 x 10-5 M

note: path length of cuvette is 1 cm

b) Initially 1 mL from the 10 mL flask is diluted to 25 mL volumetric flask. so the dilution factor is 25

thus concentration in the 10 mL flask = 25 x 8 x 10-5 M = 0.002 M

c). Molarity is the number of moles of a solute in 1L solution. ie 0.002 moles in 1 L (1 L = 1000 mL )

or 0.00002 moles in 10 mL

number moles = mass in g/molar mass

molar mass = 259.61 g/mol

thus mass = 259.61 x 0.00002 = 0.00519 g or 5.196 mg

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
You dissolve a compound with a molecular mass of 271.98 g/mol in a 10-mL volumetric flask....
You dissolve a compound with a molecular mass of 271.98 g/mol in a 10-mL volumetric flask. You remove a 1.00-mL aliquot, place it in a 25-mL volumetric flask and dilute it to the mark. The absorbance of this diluted solution at 329 nm was 0.485 in a 1.000-cm cuvet. The molar absorptivity for this compound at 329 nm is ε329 = 6133 M–1 cm–1. (a) What is the concentration of the compound in the cuvet? (b) What is the concentration...
You dissolve a compound with a molecular mass of 287.57 g/mol in a 10-mL volumetric flask....
You dissolve a compound with a molecular mass of 287.57 g/mol in a 10-mL volumetric flask. You remove a 1.00-mL aliquot, place it in a 25-mL volumetric flask and dilute it to the mark. The absorbance of this diluted solution at 349 nm was 0.486 in a 1.000-cm cuvet. The molar absorptivity for this compound at 349 nm is ε349 = 5911 M–1 cm–1.
I am trying to calculate the mass of my unknown based on this data This was...
I am trying to calculate the mass of my unknown based on this data This was measured at 505nm unknown conc=3.12E-5M unknown absorbance=.290 Other measurements of known solutions with .2132g of FeSO4(NH4)2SO4⋅6H2O, MW = 392.14) Absorbance Concentration .04 4.50E-06 .077 8.70E-06 .16 1.74E-06 .315 3.48E-05 .472 5.44E-05 y=mx+b y=7430.4x+.058 Procedure: Unknown solution of Fe2+. Each student analyzes their own unknown. Your unknown will be provided in a 250-mL volumetric flask. The unknown already contains sufficient sulfuric acid. Dilute to volume...
Problem: You weigh out a piece of copper wire (AW=63.546): Weight of copper standard....................0.2992 g Dissolve...
Problem: You weigh out a piece of copper wire (AW=63.546): Weight of copper standard....................0.2992 g Dissolve it in a slight excess of concentrated nitric acid. Add to the solution the required amount of concentrated ammonia. Transfer this quantitatively to a 100 mL volumetric flask, dilute to volume, and mix thoroughly. 10.00 mL of this is pipetted into a 100 mL volumetric flask, the required amount of concentrated ammonia is added and diluted to volume. This is Standard 1. Standard 2...
A 0.4505 g sample of CaCO3 was dissolved in the HCl and the resulting solution diluted...
A 0.4505 g sample of CaCO3 was dissolved in the HCl and the resulting solution diluted to 25.00 mL in a volumetric flask. A 25.00 mL aliquot of the solution required 29.25 mL of EDTA solution for titration to the Eriochrom Black T end point. a. How many moles of CaCO3 were present in the solid sample? b. What is the molar concentration of Ca^2+ are contained in a 250.00 mL aliquot of the CaCl2 solution? c. How many moles...
A 5.00-mL aliquot of a solution that contains 2.66 ppm Fe2+ is treated with an appropriate...
A 5.00-mL aliquot of a solution that contains 2.66 ppm Fe2+ is treated with an appropriate excess of thiocyanate and diluted to 50.0 mL. The molar absorptivity of a Fe2+-thiocyanate solution at 580 nm is 7000 L mol-1 cm-1. What is the absorbance of the above diluted Fe2+-thiocyanate solution at 580 nm in a 5.00-cm cell?
A 0.0000831 M sample of Compound X in a solvent has an absorbance of 0.349 at...
A 0.0000831 M sample of Compound X in a solvent has an absorbance of 0.349 at 528 nm in a 1.000-cm cuvet. The solvent alone has an absorbance of 0.056. What is the molar absorptivity of Compound X? A different sample of Compound X in the same solvent has an absorbance of 0.501 at 528 nm when measured with the same cuvet. What is the concentration of this second sample?
A 0.0000552 M sample of Compound X in a solvent has an absorbance of 0.266 at...
A 0.0000552 M sample of Compound X in a solvent has an absorbance of 0.266 at 528 nm in a 1.000-cm cuvet. The solvent alone has an absorbance of 0.052. What is the molar absorptivity of Compound X? A different sample of Compound X in the same solvent has an absorbance of 0.528 at 528 nm when measured with the same cuvet. What is the concentration of this second sample?
Using a 10 mL burette and a 100 mL volumetric flask you will prepare, in the...
Using a 10 mL burette and a 100 mL volumetric flask you will prepare, in the lab, standard solutions of ∼ 2, 4, 6, 8 and 10 ppm in Ca2+ from the ∼ 100 ppm standard. You will, of course, need to know these concentrations as precisely as possible. Suppose you have a standard solution which is 99.709 ppm in Ca2+ and 100.790 ppm in Na+. Using the 10 mL burette, you deliver 8.03 mL of this standard solution into...
i cant get the weight of aspirin The Standard Concentration of Aspirin Standard 2.551 mg/mL Volume...
i cant get the weight of aspirin The Standard Concentration of Aspirin Standard 2.551 mg/mL Volume of Aspirin Standard used 3.59 mL Diluted to 100.00 mL (volumetric flask) with FeCl3 solution. This is Standard 1 Using the same cuvet for all measurements, the following %T's were obtained: blank 100.7 % Standard 1 27.4 % The Unknown Weight of tablet 498.4 mg Dissolved at boiling point in dilute NaOH. Quantitatively transferred and diluted to 100.00 mL. Volume of original tablet solution...