Question

In a constant‑pressure calorimeter, 65.0 mL65.0 mL of 0.320 M Ba(OH)20.320 M Ba(OH)2 was added to...

In a constant‑pressure calorimeter, 65.0 mL65.0 mL of 0.320 M Ba(OH)20.320 M Ba(OH)2 was added to 65.0 mL65.0 mL of 0.640 M HCl.0.640 M HCl.

The reaction caused the temperature of the solution to rise from 21.87 ∘C21.87 ∘C to 26.23 ∘C.26.23 ∘C. If the solution has the same density and specific heat as water (1.00 g/mL1.00 g/mL and 4.184J/g⋅°C,)4.184J/g⋅°C,) respectively), what is Δ?ΔH for this reaction (per mole H2OH2O produced)? Assume that the total volume is the sum of the individual volumes.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
In a constant-pressure calorimeter, 65.0 mL of 0.340 M Ba(OH)2 was added to 65.0 mL of...
In a constant-pressure calorimeter, 65.0 mL of 0.340 M Ba(OH)2 was added to 65.0 mL of 0.680 M HCl. The reaction caused the temperature of the solution to rise from 24.38 °C to 29.01 °C. If the solution has the same density and specific heat as water (1.00 g/mL and 4.184 J/g·°C, respectively), what is ΔH for this reaction (per mole of H2O produced)? Assume that the total volume is the sum of the individual volumes.
In a constant-pressure calorimeter, 60.0 mL of 0.300 M Ba(OH)2 was added to 60.0 mL of...
In a constant-pressure calorimeter, 60.0 mL of 0.300 M Ba(OH)2 was added to 60.0 mL of 0.600 M HCl. The reaction caused the temperature of the solution to rise from 21.02 °C to 25.11 °C. If the solution has the same density and specific heat as water (1.00 g/mL and 4.184 J/g·°C, respectively), what is ΔH for this reaction (per mole of H2O produced)? Assume that the total volume is the sum of the individual volumes.
In a constant-pressure calorimeter, 55.0 mL of 0.330 M Ba(OH)2 was added to 55.0 mL of...
In a constant-pressure calorimeter, 55.0 mL of 0.330 M Ba(OH)2 was added to 55.0 mL of 0.660 M HCl. The reaction caused the temperature of the solution to rise from 23.64 °C to 28.14 °C. If the solution has the same density and specific heat as water (1.00 g/mL and 4.184 J/g·K, respectively), what is ΔH for this reaction (per mole of H2O produced)? Assume that the total volume is the sum of the individual volumes.
In a constant-pressure calorimeter, 70.0 mL of 0.340 M Ba(OH)2 was added to 70.0 mL of...
In a constant-pressure calorimeter, 70.0 mL of 0.340 M Ba(OH)2 was added to 70.0 mL of 0.680 M HCl. The reaction caused the temperature of the solution to rise from 22.00 °C to 26.63 °C. If the solution has the same density and specific heat as water (1.00 g/mL and 4.184 J/g·K, respectively), what is ΔH for this reaction (per mole of H2O produced)? Assume that the total volume is the sum of the individual volumes.
In a constant-pressure calorimeter, 70.0 mL of 0.340 M Ba(OH)2 was added to 70.0 mL of...
In a constant-pressure calorimeter, 70.0 mL of 0.340 M Ba(OH)2 was added to 70.0 mL of 0.680 M HCl. The reaction caused the temperature of the solution to rise from 21.03 °C to 25.66 °C. If the solution has the same density and specific heat as water (1.00 g/mL and 4.184 J/g·K, respectively), what is ΔH for this reaction (per mole of H2O produced)? Assume that the total volume is the sum of the individual volumes.
In a constant-pressure calorimeter, 70.0 mL of 0.330 M Ba(OH)2 was added to 70.0 mL of...
In a constant-pressure calorimeter, 70.0 mL of 0.330 M Ba(OH)2 was added to 70.0 mL of 0.660 M HCl. The reaction caused the temperature of the solution to rise from 24.17 °C to 28.67 °C. If the solution has the same density and specific heat as water (1.00 g/mL and 4.184 J/g·K, respectively), what is ΔH for this reaction (per mole of H2O produced)? Assume that the total volume is the sum of the individual volumes.
In a constant-pressure calorimeter, 65.0 mL of 0.830 M H2SO4 was added to 65.0 mL of...
In a constant-pressure calorimeter, 65.0 mL of 0.830 M H2SO4 was added to 65.0 mL of 0.270 M NaOH. The reaction caused the temperature of the solution to rise from 21.71 °C to 23.55 °C. If the solution has the same density and specific heat as water (1.00 g/mL and 4.184 J/g·K, respectively), what is ΔH for this reaction (per mole of H2O produced)? Assume that the total volume is the sum of the individual volumes.
In a constant-pressure calorimeter, 50.0 mL of 0.930 M H2SO4 was added to 50.0 mL of...
In a constant-pressure calorimeter, 50.0 mL of 0.930 M H2SO4 was added to 50.0 mL of 0.290 M NaOH. The reaction caused the temperature of the solution to rise from 21.88 °C to 23.86 °C. If the solution has the same density and specific heat as water (1.00 g/mL and 4.184 J/g·K, respectively), what is ΔH for this reaction (per mole of H2O produced)? Assume that the total volume is the sum of the individual volumes.
In a constant-pressure calorimeter, 55.0 mL of 0.840 M H2SO4 was added to 55.0 mL of...
In a constant-pressure calorimeter, 55.0 mL of 0.840 M H2SO4 was added to 55.0 mL of 0.260 M NaOH. The reaction caused the temperature of the solution to rise from 21.91 °C to 23.68 °C. If the solution has the same density and specific heat as water (1.00 g/mL and 4.184 J/g·K, respectively), what is ΔH for this reaction (per mole of H2O produced)? Assume that the total volume is the sum of the individual volumes.
In a constant-pressure calorimeter, 75.0 mL of 0.810 M H2SO4 was added to 75.0 mL of...
In a constant-pressure calorimeter, 75.0 mL of 0.810 M H2SO4 was added to 75.0 mL of 0.480 M NaOH. The reaction caused the temperature of the solution to rise from 24.47 °C to 27.74 °C. If the solution has the same density and specific heat as water (1.00 g/mL and 4.184 J/g·K, respectively), what is ΔH for this reaction (per mole of H2O produced)? Assume that the total volume is the sum of the individual volumes.