Question

At a certain temperature, 0.3811 mol of N2 and 1.741 mol of H2 are placed in...

At a certain temperature, 0.3811 mol of N2 and 1.741 mol of H2 are placed in a 4.50-L container. At equilibrium, 0.1401 mol of N2 is present. Calculate the equilibrium constant, Kc.

Homework Answers

Answer #1

Moles of N2 = 0.3811 mol , Moles of H2 = 1.741 mol

Volume of container = 4.50 L

Concentration of N2 = 0.3811 mol / 4.50 L = 0.0847 mol/L = 0.0847 M

Concentration of H2 = 1.741 mol / 4.50 L = 0.387 mol/L = 0.387 M

Equilibrium concentration of N2 = 0.1401 mol / 4.50 L = 0.0311 mol/L = 0.0311 M

Reaction :- N2(g) + 3H2(g) ------> 2 NH3(g)

Initial Conc. 0.0847 0.387 0

Change in Conc. -x -3x +2x

Equilibrium Conc. 0.0847-x 0.387-3x. 2x

From question, 0.0847 - x = 0.0311

x = 0.0847 - 0.0311 = 0.0536

Equilibrium concentration of H2(g) = (0.387 - 3x)M = (0.387 - 3 * 0.0536)M = 0.2262 M

Equilibrium concentration of NH3(g) = 2x M = 2 * 0.0536 M = 0.1072 M

Kc = [NH3]^2 / [N2][H2]^3 = (0.1072)^2 / (0.0311)(0.2262)^3

Kc = 0.0115 / 0.00036 = 31.94

Kc = 31.94

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
At a certain temperature, 0.3611 mol of N2 and 1.701 mol of H2 are placed in...
At a certain temperature, 0.3611 mol of N2 and 1.701 mol of H2 are placed in a 4.50 L container. N2(g)+3H2(g)↽−−⇀2NH3(g) N 2 ( g ) + 3 H 2 ( g ) ↽ − − ⇀ 2 NH 3 ( g ) At equilibrium, 0.1401 0.1401 mol of N2 N 2 is present. Calculate the equilibrium constant, ?c K c .
At a certain temperature, 0.4011 mol of N2 and 1.641 mol of H2 are placed in...
At a certain temperature, 0.4011 mol of N2 and 1.641 mol of H2 are placed in a 4.00-L container. N2+3H2<-->2NH3 At equilibrium, 0.1801 mol of N2 is present. Calculate the equilibrium constant, Kc.
At a certain temperature, .4211 mol of N2 and 1.801 mol H2 are placed in a...
At a certain temperature, .4211 mol of N2 and 1.801 mol H2 are placed in a 1.50L beaker. At Equilibrium, .1001 mol N2 is present. Calculate Kc. N2(g)+3H2(g) -->2NH3(g)
At a certain temperature, the equilibrium constant, Kc, for this reaction is 53.3. H2(g) + I2(g)...
At a certain temperature, the equilibrium constant, Kc, for this reaction is 53.3. H2(g) + I2(g) <----> 2HI(g) Kc=53.3 At this temperature, 0.400 mol of H2 and 0.400 mol of I2 were placed in a 1.00-L container to react. What concentration of HI is present at equilibrium?
At a certain temperature, the equilibrium constant, Kc, for this reaction is 53.3. H2(g) + I2(g)...
At a certain temperature, the equilibrium constant, Kc, for this reaction is 53.3. H2(g) + I2(g) <-------> 2 HI(g) Kc=53.3 At this temperature, 0.600 mol of H2 and 0.600 mol of I2 were placed in a 1.00-L container to react. What concentration of HI is present at equilibrium?
At a certain temperature, the equilibrium constant, Kc for this reaction is 53.3. H2(g)+I2(g) = 2HI(g)...
At a certain temperature, the equilibrium constant, Kc for this reaction is 53.3. H2(g)+I2(g) = 2HI(g) At this temperature, 0.300 mol of H2 and 0.300 mol of I2 were placed in a 1.00 L container to react. What concentration of HI is present at equilibrium? View comments (1)
At a certain temperature, 0.760 mol of SO3 is placed in a 3.00-L container. At equilibrium,...
At a certain temperature, 0.760 mol of SO3 is placed in a 3.00-L container. At equilibrium, 0.190 mol of O2 is present. Calculate Kc. 2SO3(g) <------> 2SO2(g) + O2(g)
At a certain temperature, 0.920 mol of SO3 is placed in a 2.50-L container. 2 SO3...
At a certain temperature, 0.920 mol of SO3 is placed in a 2.50-L container. 2 SO3 (g) ⇌ 2 SO2 (g) + O2 (g) At equilibrium, 0.140 mol of O2 is present. Calculate Kc.
1.) The equilibrium constant for the chemical equation N2(g)+3H2(g) <--> 2NH3(g) is Kp = 1.09 at...
1.) The equilibrium constant for the chemical equation N2(g)+3H2(g) <--> 2NH3(g) is Kp = 1.09 at 209 °C. Calculate the value of the Kc for the reaction at 209 °C. 2.) At a certain temperature, 0.3411 mol of N2 and 1.581 mol of H2 are placed in a 1.50-L container. N2(g)+3H2(g) <--> 2NH3(g) At equilibrium, 0.1801 mol of N2 is present. Calculate the equilibrium constant, Kc. 3.) At a certain temperature, the Kp for the decomposition of H2S is 0.748....
At a certain temperature, 0.940 mol of SO3 is placed in a 5.00-L container. 2SO3(g)--> 2SO2(g)+O2(g)...
At a certain temperature, 0.940 mol of SO3 is placed in a 5.00-L container. 2SO3(g)--> 2SO2(g)+O2(g) At equilibrium, 0.110 mol of O2 is present. Calculate Kc.