Question

When 1.020 g of ethanol (C2H6O, 46.07 g/mol) was burned in a bomb calorimeter containing 2400....

When 1.020 g of ethanol (C2H6O, 46.07 g/mol) was burned in a bomb calorimeter containing 2400. g of water, the temperature of the water rose from 22.46 to 25.52ºC.   The specific heat of water is 4.18 J/g-°C. What is the enthalpy of combustion of 1 mol of ethanol? What is the heat capacity of the calorimeter?

Homework Answers

Answer #1

Given

Mass of ethanol = 1.020 g

Molar mass = 46 g/mol

No. of moles = Mass of ethanol / Molar mass = 1.020 g / 46 g/mol = 0.0222 moles

Mass of water = 2400 g

Molar mass of water = 18 g/mol

No. of moles of water = 2400 g / 18 g/mol = 133.33 moles

Specific heat of water Cp = 4.18 J/g.C

Intial Temperature = 22.46 C

FInal temperature T2 = 25.52 C

heat released from ethanol = heat absorbed by water = (m*Cp*(T2-T1)) of water

heat released from ethanol = 2400 g * 4.18 J/g.C ( 25.52 - 22.46) C = 30697.92 J

0.0222 moles of ethanol released  30697.92 J

so Enthalpy of combustion of 1 mole of ethanol =  30697.92 J / 0.0222 moles = 1382.79 KJ//mol Answer

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 12.8 g sample of ethanol (C2H5OH) is burned in a bomb calorimeter with a heat...
A 12.8 g sample of ethanol (C2H5OH) is burned in a bomb calorimeter with a heat capacity of 5.65 kJ/°C. The temperature of the calorimeter and the contents increases from 25°C to 35°C. What is the heat of combustion per mole of ethanol? The molar mass of ethanol is 46.07 g/mol. C2H5OH (l) + 3 O2 (g) -----> 2 CO2 (g) + 3 H2O (g) ΔE = ?
A 1.000 g sample of octane (C8H18) is burned in a bomb calorimeter containing 1200 grams...
A 1.000 g sample of octane (C8H18) is burned in a bomb calorimeter containing 1200 grams of water at an initial temperature of 25.00ºC. After the reaction, the final temperature of the water is 33.20ºC. The heat capacity of the calorimeter (also known as the “calorimeter constant”) is 837 J/ºC. The specific heat of water is 4.184 J/g ºC. Calculate the heat of combustion of octane in kJ/mol.
A 2.50 mol sample of benzene (C6H6, 78.11 g/mol) was burned in a bomb calorimeter with...
A 2.50 mol sample of benzene (C6H6, 78.11 g/mol) was burned in a bomb calorimeter with a heat capacity of 800 J/°C. The calorimeter contained 100g of water (4.18J/g°C) and the temperature increased by 4°C. What is the molar enthalpy of combustion for this compound?
A 1.00g sample of the rocket fuel hydrazine N2H4 is burned in a bomb calorimeter containing...
A 1.00g sample of the rocket fuel hydrazine N2H4 is burned in a bomb calorimeter containing 12.00g of water. The temperature of the water and bomb calorimeter rises from 24.62 degrees Celsius to 28.16 degrees Celsius. Assuming the heat capacity of the empty bomb calorimeter is 837J/degrees Celsius, calculate the heat of combustion of 1 mol of hydrazine in the bomb calorimeter. (The specific heat capacity of water is 4.184 J/g*degree Celsius .
. A 0.500 g sample of naphthalene (C10H8) is burned in a bomb calorimeter containing 650...
. A 0.500 g sample of naphthalene (C10H8) is burned in a bomb calorimeter containing 650 grams of water at an initial temperature of 20.00 oC. After the reaction, the final temperature of the water is 26.4ºC. The heat capacity of the calorimeter is 420 J/oC. Using these data, calculate the heat of combustion of naphthalene in kJ/mol.
When 0.455 g of anthracene, C14H10, is combusted in a bomb calorimeter that has a water...
When 0.455 g of anthracene, C14H10, is combusted in a bomb calorimeter that has a water jacket containing 500.0 g of water, the temperature of the water increases by 8.63 degrees C. Assuming that the specific heat of water is 4.18 J/(g degrees C) and that the heat absorption by the calorimeter is negligible, estimate the enthalpy of combustion per mole of anthracene.
When 86.6 g of a compound was burned in a bomb calorimeter that contained 0.184 kg...
When 86.6 g of a compound was burned in a bomb calorimeter that contained 0.184 kg of water the temperature rise of the water in the calorimeter was 57.0C. If the heat of combustion of the compound is 1,396 kJ/mol, what is the molar mass of the compound? Specific heat of water is 4.184 J/gC. Answer to 0 decimal places and enter the units.
A 0.553-g sample of diphenyl phthalate (C20H14O4) is burned in a bomb calorimeter and the temperature...
A 0.553-g sample of diphenyl phthalate (C20H14O4) is burned in a bomb calorimeter and the temperature increases from 24.40 °C to 27.57 °C. The calorimeter contains 1.08×103 g of water and the bomb has a heat capacity of 877 J/°C. The heat capacity of water is 4.184 J g-1°C-1. Based on this experiment, calculate ΔE for the combustion reaction per mole of diphenyl phthalate burned. ______ kJ/mol
A 0.373-g sample of naphthalene (C10H8) is burned in a bomb calorimeter and the temperature increases...
A 0.373-g sample of naphthalene (C10H8) is burned in a bomb calorimeter and the temperature increases from 24.90 °C to 27.80 °C. The calorimeter contains 1.05E3 g of water and the bomb has a heat capacity of 836 J/°C. Based on this experiment, calculate ΔE for the combustion reaction per mole of naphthalene burned (kJ/mol).
A 0.287-g sample of bianthracene (C28H18) is burned in a bomb calorimeter and the temperature increases...
A 0.287-g sample of bianthracene (C28H18) is burned in a bomb calorimeter and the temperature increases from 25.30 °C to 27.50 °C. The calorimeter contains 1.03E3 g of water and the bomb has a heat capacity of 856 J/°C. Based on this experiment, calculate ΔE for the combustion reaction per mole of bianthracene burned (kJ/mol).
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT