Question

Light with a wavelength of 96.94 x 10^ ­9 m is required to excite an electron...

Light with a wavelength of 96.94 x 10^ ­9 m is required to excite an electron in a hydrogen atom from level n=1 to a certain final level. What is the value of n of the final level?ΔE =− 2.18 × 10 ^ −18J ( 1/ n ^ 2f − 1 /n ^2i )

Homework Answers

Answer #1

As we know the change in energy for H-atom

Here

Now apply the above law

Final energy level =1

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Will a photon of light of wavelength 480 nm excite an electron in the hydrogen atom...
Will a photon of light of wavelength 480 nm excite an electron in the hydrogen atom from the n=1 level to the n=2 level? Explain
An excited hydrogen atom emits light with a wavelength of 397.2 nm to reach the energy...
An excited hydrogen atom emits light with a wavelength of 397.2 nm to reach the energy level for which n = 2. In which principal quantum level did the electron begin? (c = 3.00 x 108 m/s, h = 6.63 x 10-34 J•s, RH = 2.18 x 10-18J).
What is the wavelength of light (in m) emitted by a hydrogen atom when an electron...
What is the wavelength of light (in m) emitted by a hydrogen atom when an electron relaxes from the 5 energy level to the 3 energy level?
Calculate the wavelength (in nanometers) of a photon emitted by a hydrogen atom when its electron...
Calculate the wavelength (in nanometers) of a photon emitted by a hydrogen atom when its electron drops from the n = 4 to n = 2 state. Consider the following energy levels of a hypothetical atom: E4 −1.61 × 10−19 J E3 −7.51 × 10−19 J E2 −1.35 × 10−18 J E1 −1.45 × 10−18 J (a) What is the wavelength of the photon needed to excite an electron from E1 to E4? ____ ×10m (b) What is the energy...
Part C What will occur if light with a shorter wavelength than that in part b...
Part C What will occur if light with a shorter wavelength than that in part b =( 91.1 nm) is used to excite the hydrogen atom? What will occur if light with a shorter wavelength than that in part (b) is used to excite the hydrogen atom? A) If light with a wavelength shorter than 91.1 nm is used to excite the H atom, the excess energy will be devided to the kinetic and potential energy of the ejected electron....
Light with a frequency of 3.197 x 10^15 will excite an electron in ground state hydogen...
Light with a frequency of 3.197 x 10^15 will excite an electron in ground state hydogen to what level?
A. Determine the wavelength of the light absorbed when an electron in a hydrogen atom makes...
A. Determine the wavelength of the light absorbed when an electron in a hydrogen atom makes a transition from an orbital in which n=2 to an orbital in which n=7. Express the wavelength in nanometers to three significant figures. B. An electron in the n=6 level of the hydrogen atom relaxes to a lower energy level, emitting light of λ=93.8nm. Find the principal level to which the electron relaxed. Express your answer as an integer. Can you explain it in...
Determine the wavelength of the light absorbed when an electron in a hydrogen atom makes a...
Determine the wavelength of the light absorbed when an electron in a hydrogen atom makes a transition from an orbital in which n = 2 to an orbital in which n = 5. Determine the wavelength of light emitted when an electron in a hydrogen atom makes a transition from an orbital in n = 6 to an orbital in n = 5.
9) a. Explain what is happening inside an atom when it emits light. 9) b. Explain...
9) a. Explain what is happening inside an atom when it emits light. 9) b. Explain what is happening inside an atom when it absorbs light. 10) An excited hydrogen atom emits light with a frequency of 1.141 x 1014 Hz for its electron to reach the n=4 energy level. In which energy level did the electron begin? Big hint: what is the sign (neg or pos) of the electron’s energy change? (Remember, it says “emits”) Use this sign when...
Energy, Wavelength, Frequency Problem: Show your work neatly and methodically. Consider an electron in the hydrogen...
Energy, Wavelength, Frequency Problem: Show your work neatly and methodically. Consider an electron in the hydrogen atom giving off light which has a wavelength of 625 nm, according to the Balmer Series. a) From what energy level in the hydrogen atom did the electron fall to emit this light? b) What is the frequency of this light? c) What is the energy of this light? 2. a) Use the de Broglie relationship to determine the wavelength of a 85 kg...