Question

CHEMISTRY! A solution of a triprotic acid is prepared by dissolving 6.088 g of the solid...

CHEMISTRY!

A solution of a triprotic acid is prepared by dissolving 6.088 g of the solid acid in sufficient DI water to make 400.00 mL of solution.   18.36 mL of a 0.1745 M NaOH solution are required to neutralize 10.00 mL of this acid solution?

A) What is the concentration of the acid solution?

B) What is the molar mass of the acid?

NOTE: this was the response to my answer -> .961146

This would be correct for a monoprotic acid titrated with a triprotic base. In this question, a triprotic acid is titrated with a monoprotic base.

Homework Answers

Answer #1

Reaction between a triprotic acid and NaOH will be

H3A + 3NaOH Na3A + 3H2O

So the total moles of NaOH used in this titration will be 3 times the number of moles of the triprotic acid

number of moles of NaOH is 18.36 mL of a 0.1745 M NaOH = 0.01836 x 0.1745 = 0.00320 moles of NaOH is required to neutralize 10 mL of the acid

so for 400 mL of the acid we will need 0.00320 x 40 = 0.128 moles

since 0.128 moles is in 400 mL the concentration is (1000 x 0.128)/400 = 0.32 M solution

If 0.128 moles is 6.088 g the 1 mole will be 6.088/0.128 = 47.56 is the molar mass of the acid.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A solution of an unknown acid is prepared by dissolving 5.573 g of the solid acid...
A solution of an unknown acid is prepared by dissolving 5.573 g of the solid acid in sufficient DI water to make 300.00 mL of solution 19.92 mL of a 0.1253 M NaOH solution are required to neutralize 10.00 mL of this acid solution? What is the equivalent molar mass of the acid?
A solution of an unknown acid is prepared by dissolving 5.968 g of the solid acid...
A solution of an unknown acid is prepared by dissolving 5.968 g of the solid acid in sufficient DI water to make 350.00 mL of solution. 20.12 mL of a 0.1666 M NaOH solution are required to neutralize 10.00 mL of this acid solution?
A solution of a theoretical triprotic acid was prepared by dissolving 4.037 g of solid in...
A solution of a theoretical triprotic acid was prepared by dissolving 4.037 g of solid in enough DI water to make 500.0 mL of solution.   10.11 mL of a 0.592 M solution was required to titrate 20.00 mL of this acid's solution. Part A What is the concentration of the acid solution? Part B What is the molar mass of the acid? Hint: You need to calculate the total moles in the 500.0 mL solution (the full 500.0 mL was...
If   14.99 mL of NaOH are required to titrate 15.00 mL of a   0.46 M oxalic acid solution,...
If   14.99 mL of NaOH are required to titrate 15.00 mL of a   0.46 M oxalic acid solution, what is the concentration of the NaOH? A solution of a theoretical triprotic acid was prepared by dissolving 4.980 g of solid in enough DI water to make 500.0 mL of solution.   10.10 mL of a 0.448 M solution was required to titrate 20.00 mL of this acid's solution. 1. What is the concentration of the acid solution? 2. What is the molar mass...
A solution of an unknown monoprotic acid was prepared by dissolving 72.9 mg of the acid...
A solution of an unknown monoprotic acid was prepared by dissolving 72.9 mg of the acid into 50. mL of water. 10.0 mL of 0.10 M NaOH is needed to titrate a 25 mL aliquot of the unknown monoprotic acid. From this info, calculate the molar mass of the unknown acid (g/mol).
A solution was made by dissolving 0.580 g of an unknown monoprotic acid in water, and...
A solution was made by dissolving 0.580 g of an unknown monoprotic acid in water, and diluting the solution to a final volume of 25.00 mL. This solution was then titrated with 0.100 M NaOH. It took 36.80 mL of NaOH to reach the equivalence point, at which point the pH was 10.42. a. Determine the molar mass of the unknown acid. b. Calculate what the pH was after 18.40 mL of NaOH was added during the titration. Hint: the...
A 5.171 g sample of a solid, weak, monoprotic acid is used to make a 100.0...
A 5.171 g sample of a solid, weak, monoprotic acid is used to make a 100.0 mL solution. 26.00 mL of the resulting acid solution is then titrated with 0.09671 M NaOH. The pH after the addition of15.00 mL of the base is 5.51, and the endpoint is reached after the addition of 47.85 mL of the base. (b) What is the molar mass of the acid? (c) What is the pKa of the acid?
A 1.224-g sample of a solid, weak, monoprotic acid is used to make 100.0 mL of...
A 1.224-g sample of a solid, weak, monoprotic acid is used to make 100.0 mL of solution. 55.0 mL of this solution was titrated with 0.08096-M NaOH. The pH after the addition of 12.88 mL of base was 7.00, and the equivalence point was reached with the addition of 41.81 mL of base. a) How many millimoles of acid are in the original solid sample? Hint: Don't forget the dilution. mmol acid b) What is the molar mass of the...
A 1.731-g sample of a solid, weak, monoprotic acid is used to make 100.0 mL of...
A 1.731-g sample of a solid, weak, monoprotic acid is used to make 100.0 mL of solution. 45.0 mL of this solution was titrated with 0.09322-M NaOH. The pH after the addition of 11.78 mL of base was 4.23, and the equivalence point was reached with the addition of 36.47 mL of base. a) How many millimoles of acid are in the original solid sample? Hint: Don't forget the dilution. ______mmol acid b) What is the molar mass of the...
A 1.550-g sample of a solid, weak, monoprotic acid is used to make 100.0 mL of...
A 1.550-g sample of a solid, weak, monoprotic acid is used to make 100.0 mL of solution. 25.0 mL of this solution was titrated with 0.06307-M NaOH. The pH after the addition of 15.77 mL of base was 4.73, and the equivalence point was reached with the addition of 37.11 mL of base. a) How many millimoles of acid are in the original solid sample? Hint: Don't forget the dilution. mmol acid b) What is the molar mass of the...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT