Question

Values of the rate constant for the decomposition of N2O5 at four different temperatures are as...

Values of the rate constant for the decomposition of N2O5 at four different temperatures are as follows: T(K) k(s^-1) 658 2.14 x 10^5 673 3.23 x 10^5 688 4.81 x 10^5 703 7.03 x 10^5 Determine the activation energy of the decomposition reaction: _____kJ/mol Calculate the value of the rate constant at 300 K. _____s^-1

Homework Answers

Answer #1

Temperature k value given are

1) 658 2.14 x 10-5

2) 673 3.23 x1o-5

3) 688 4.81 x 10-5

4) 703 7.03x 10-5

Using the Arhenius equation log(k2/k1) = Ea/R [1/T1 -1/T2]

calculating for different sets 1,2,3 and 4 , we get the valuesfor activation energy like 43858 , 44371, 44088 etc. the average of which can be taken as the activation energy for the reaction .

Thus activation energy = 44105 j = 44.1 kJ /mol

Using the same expression, using the value of Ea already calculated, we can calculate the k at 300K.

log (2.14x 10-5/ k ) = 44105/8.314[1/300 -1/658]

Solving for k we get k = 2.49 x 10-12 M/s

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The rate constant for the decomposition of N2O5 is 7.78 × 10−7 at 273 K and...
The rate constant for the decomposition of N2O5 is 7.78 × 10−7 at 273 K and 3.46 × 10−5 at T2. If the activation energy is 1027 kJ/mol, what is the final temperature? 2 N2O5(g) → 4 NO2(g) + O2(g)
The rate constant for the first-order decomposition of N2O5 by the reaction 2 N2O5 (g) ...
The rate constant for the first-order decomposition of N2O5 by the reaction 2 N2O5 (g)  4 NO2(g) + O2(g) is k, = 3.38 x 10-5 s -1 at 25 C. What is the half-life of N2O5? What will be the partial pressure, initially 500 Torr, at ( a) 50 s; (b) 20 min, (c) 2 hr after initiation of the reaction?
The rate constant for the decomposition of N2O5 increases from 1.52x10-5 s-1 at 25oC to 3.83x10-3...
The rate constant for the decomposition of N2O5 increases from 1.52x10-5 s-1 at 25oC to 3.83x10-3 s-1 at 45oC. Calculate the activation energy for this reaction.
In a series of experiments on the decomposition of dinitrogen pentoxide, N2O5, rate constants were determined...
In a series of experiments on the decomposition of dinitrogen pentoxide, N2O5, rate constants were determined at two different temperatures. At 35°C, the rate constant was 1.4×10-4/s; at 45°C, the rate constant was 5.0×10-4/s. (a) What is the activation energy for this reaction? (b) What is the value of the rate constant at 85°C?
The rate constant for the decomposition of acetaldehyde, CH3CHO, to methane, CH4, and carbon monoxide, CO,...
The rate constant for the decomposition of acetaldehyde, CH3CHO, to methane, CH4, and carbon monoxide, CO, in the gas phase is 1.1 × 10−2 L/mol/s at 703 K and 4.95 L/mol/s at 865 K. Determine the activation energy for this decomposition.
The first-order rate constant for the decomposition of N2O5, given below, at 70°C is 6.82 10-3...
The first-order rate constant for the decomposition of N2O5, given below, at 70°C is 6.82 10-3 s-1. Suppose we start with 0.0550 mol of N2O5(g) in a volume of 3.5 L. 2 N2O5(g) → 4 NO2(g) + O2(g) (a) How many moles of N2O5 will remain after 3.0 min? mol (b) How many minutes will it take for the quantity of N2O5 to drop to 0.005 mol? min (c) What is the half-life of N2O5 at 70°C? min
The first-order rate constant for the decomposition of N2O5, given below, at 70°C is 6.82 10-3...
The first-order rate constant for the decomposition of N2O5, given below, at 70°C is 6.82 10-3 s-1. Suppose we start with 0.0550 mol of N2O5(g) in a volume of 2.5 L. 2 N2O5(g) → 4 NO2(g) + O2(g) (a) How many moles of N2O5 will remain after 2.5 min? mol (b) How many minutes will it take for the quantity of N2O5 to drop to 0.005 mol? min (c) What is the half-life of N2O5 at 70°C? min
The following data show the rate constant of a reaction measured at several different temperatures. Temperature...
The following data show the rate constant of a reaction measured at several different temperatures. Temperature (K) Rate constant (1/s) 300 6.50×10−2 310 0.191 320 0.527 330 1.36 340 3.34 Part A. Use an Arrhenius plot to determine the activation barrier (Ea) for the reaction. Part B. Use an Arrhenius plot to determine the frequency factor (A) for the reaction.
For the gas phase decomposition of vinyl ethyl ether, CH2=CH-OC2H5C2H4 + CH3CHO the rate constant has...
For the gas phase decomposition of vinyl ethyl ether, CH2=CH-OC2H5C2H4 + CH3CHO the rate constant has been determined at several temperatures. When ln k in s-1 is plotted against the reciprocal of the Kelvin temperature, the resulting linear plot has a slope of -2.20×104 K and a y-intercept of 26.3. The activation energy for the gas phase decomposition of vinyl ethyl ether is kJ/mol.
The first-order rate constant for the decomposition of N2O5, 2N2O5(g)→4NO2(g)+O2(g) at 70∘C is 6.82×10−3 s−1. Suppose...
The first-order rate constant for the decomposition of N2O5, 2N2O5(g)→4NO2(g)+O2(g) at 70∘C is 6.82×10−3 s−1. Suppose we start with 2.10×10−2 mol of N2O5(g) in a volume of 1.8 L . How many minutes will it take for the quantity of N2O5 to drop to 1.6×10−2 mol ?