Question

41. Henry's law constant for CO2 at 38°C is 2.28 ×10−3 mol / L · atm....

41. Henry's law constant for CO2 at 38°C is 2.28 ×10−3 mol / L · atm. Calculate the pH of a solution of CO2 at 38°C in equilibrium with the gas at a partial pressure of 3.25atm.

A solution of formic acid (HCOOH) has a pH of 2.17. How many grams of formic acid are there in 100.0 mL of solution? g/100.0 mL

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Henry's law constant for CO2 at 38oC is 2.28 x 10–3 mol/L\cdot⋅atm. Calculate the pH of...
Henry's law constant for CO2 at 38oC is 2.28 x 10–3 mol/L\cdot⋅atm. Calculate the pH of a solution of CO2 at 38oC in equilibrium with the gas at a partial pressure of 3.20 atm. Assume that all dissolved CO2 is in the form of carbonic acid (H2CO3). Ka1 = 4.3 x 10–7 and Ka2 = 5.6 x 10–11 for carbonic acid.
The henry's law constant of gaseous methyl bromide CH3Br is k=0.159 mol/L -atm at 25oC. what...
The henry's law constant of gaseous methyl bromide CH3Br is k=0.159 mol/L -atm at 25oC. what mass of gaseous CH3Br willl dissolve in 225 mL of water at 25oC and at a CH3Br partial pressure of 250 mm Hg? ( Molar Mass CH3Br=94.93) please explain A. 5.23 g B. 3.40 g C. 8.49 g D. 22.1 g E. 1.12 g
A handbook lists the value of the Henry's Law constant as 1.400 ✕ 10−3 mol L-1...
A handbook lists the value of the Henry's Law constant as 1.400 ✕ 10−3 mol L-1 atm-1 for methane, CH4, dissolved in water at 25°C. Calculate the mole fraction of methane in water at an methane partial pressure of 380. torr.
1. The Henry's law constant for helium gas in water at 30 ∘C is 3.7×10−4M/atm; the...
1. The Henry's law constant for helium gas in water at 30 ∘C is 3.7×10−4M/atm; the constant for N2 at 30 ∘C is 6.0×10−4M/atm.    a. If helium gas is present at 2.1 atm pressure, calculate the solubility of this gas.    b. If N2 is present at 2.1 atm pressure, calculate the solubility of this gas. 2. A solution is made containing 14.7 g of CH3OH in 186 g H2O.    a. Calculate the mass percent of CH3OH.   ...
The Henry's law constant for O2 in water at 25 °C is 1.25 × 10-5 mol...
The Henry's law constant for O2 in water at 25 °C is 1.25 × 10-5 mol L-1 kPa-1, and the solubility is 1.5 × 10-3 mol L-1. What is the partial pressure of O2 under these conditions?
The partial pressure of CO2 gas inside a bottle of soda is 3 atm at 25°C....
The partial pressure of CO2 gas inside a bottle of soda is 3 atm at 25°C. What mass (in g) of CO2 is dissolved in a 0.56 liter bottle of soda? The Henry's law constant for CO2 in water is 3.3x 10-2mol/Latm at 25°C. Enter to 1 decimal place.
Calculate the concentration of Co2 in rainwater at 25C using Henry's law. Assume that the water...
Calculate the concentration of Co2 in rainwater at 25C using Henry's law. Assume that the water is saturated with air that contains 350 ppm of CO2. The Henry's law constant for CO2 is KH=3.4X10-2 MOL/L-ATM at 15C . Express the result in molarity and ppm. Calculate the concentration of NO in rainwater at 25 C that is in equlibrium with polluted air where the NO concentration is 10 ppm. The Henry's law constant for No is Kh=2x10-4 mol/l-atm at 25C...
The current partial pressure of CO2 in the Earth's atmosphere is 3.9 • 10-4 atm. If...
The current partial pressure of CO2 in the Earth's atmosphere is 3.9 • 10-4 atm. If the Henry's law constant is 2.3 • 10-2 M/atm, calculate the equilibrium concentration of dissolved CO2 in bodies of water.
The solubility of oxygen, O2, in water is 7.20 ✕ 10−4 mol/L at 0°C when the...
The solubility of oxygen, O2, in water is 7.20 ✕ 10−4 mol/L at 0°C when the nitrogen pressure above water is 0.554 atm. Calculate the solubility of oxygen in water when the partial pressure of oxygen above water is 1.083 atm at 0°C? The Henry's Law constant for oxygen is 1.30 ✕ 10−3 mol/ L atm.
Using Raoult's law for water and Henry's law for nitrogen, calculate the pressure and gas-phase composition...
Using Raoult's law for water and Henry's law for nitrogen, calculate the pressure and gas-phase composition (mole fractions) in a system containing a liquid that is 1.200 mole% N2 and 98.80 mole% water in equilibrium with nitrogen gas and water vapor at 50.0°C. The Henry's law constant for nitrogen in water is recommended by NIST to be well represented by kH = 0.000625 exp[1300 (1/T – 1/298.15)] mol N2 / (kg H2O bar), where T is measured in Kelvin a)...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT