Question

The half-life for the radioactive decay of calcium-47 is 4.5 d. If a sample has an...

The half-life for the radioactive decay of calcium-47 is 4.5 d. If a sample has an activity of 3.5 Ci after 27 d , what was the initial activity of the sample?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The radioactive isotope (82 Sr) has a half-life of 25.4 days. A sample containing this isotope...
The radioactive isotope (82 Sr) has a half-life of 25.4 days. A sample containing this isotope has an initial activity at (t = 0) of 4.5 x 10^8 Bq. Calculate the number of nuclei that will decay in the time interval between t1 = 34.0 hours and t2 = 50.0 hours.
The half-life for the radioactive decay of U−238 is 4.5 billion years and is independent of...
The half-life for the radioactive decay of U−238 is 4.5 billion years and is independent of initial concentration. A) How long will it take for 10% of the U−238 atoms in a sample of U−238 to decay? Express your answer using two significant figures. B) If a sample of U−238 initially contained 1.4×1018 atoms when the universe was formed 13.8 billion years ago, how many U−238 atoms will it contain today? Express your answer using two significant figures.
The radioactive isotope thorium 234 has a half-life of approximately 578 hours. If a sample has...
The radioactive isotope thorium 234 has a half-life of approximately 578 hours. If a sample has an initial mass of 64 mg, a function that models the mass in mg after t hours is a(t) =   The initial mass will decay to 12 mg after ______ hours Radioactive decay equation: a(t) = a0⋅2 ^ (−t / h) a0 = starting amount a(t) = amount after t hours h = half life in hours
15.57 The half-life for the radioactive decay of U−238 is 4.5 billion years and is independent...
15.57 The half-life for the radioactive decay of U−238 is 4.5 billion years and is independent of initial concentration. How long will it take for 20% of the U−238 atoms in a sample of U−238 to decay? Express your answer using two significant figures. If a sample of U−238 initially contained 1.1×1018 atoms when the universe was formed 13.8 billion years ago, how many U−238 atoms will it contain today? Express your answer using two significant figures.
A radioactive isotope has a half-life of 72.0 min. A sample is prepared that has an...
A radioactive isotope has a half-life of 72.0 min. A sample is prepared that has an initial activity of 1.40×1011 Bq. Q1: How many radioactive nuclei are initially present in the sample? Q2: How many are present after 72.0 min? Q3: What is the activity after 72.0 min? Q4: How many are present after 144 min? Q5: What is the activity after 144 min?
The radioactive isotope 234Pa has a half-life of 6.70 h. A sample containing this isotope has...
The radioactive isotope 234Pa has a half-life of 6.70 h. A sample containing this isotope has an initial activity (t = 0) of 35.0µCi. Calculate the number of nuclei that decay in the time interval between t1 = 7.0 h and t2 = 14.0 h. ___________ Nuclei
The radioactive isotope Gold-198 has a half-life of 64.80 hrs. A sample containing this isotope has...
The radioactive isotope Gold-198 has a half-life of 64.80 hrs. A sample containing this isotope has an initial activity of 40.0 μCi. Calculate the number of nuclei that will decay in the time interval from 10 hrs to 12 hrs.[10 marks]
The radioactive plutonium isotope, 239Pu, has an half-life of 24 100 years and undergoes alpha decay....
The radioactive plutonium isotope, 239Pu, has an half-life of 24 100 years and undergoes alpha decay. The molar mass of 239Pu is 239.0521634 amu. The sample initially contains 10.0 g of 239Pu. (a) Calculate the number of moles of 239Pu that are left in the sample after 15 000 years. (4) (b) Determine the activity of 239Pu after 15 000 years, in units of Bq.
The radioactive plutonium isotope, 239Pu, has an half-life of 24 100 years and undergoes alpha decay....
The radioactive plutonium isotope, 239Pu, has an half-life of 24 100 years and undergoes alpha decay. The molar mass of 239Pu is 239.0521634 amu. The sample initially contains 10.0 g of 239Pu. (a) Calculate the number of moles of 239Pu that are left in the sample after 15 000 years. (4) (b) Determine the activity of 239Pu after 15 000 years, in units of Bq.
The decay of radioactive Rn-220 to Po-216 has a half life of 55.6 seconds. If one...
The decay of radioactive Rn-220 to Po-216 has a half life of 55.6 seconds. If one starts with a 1.00 mg sample of Rn-220, how much is left after 10.0 minutes?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT