Question

When 1.799 g of naphtalene (C10H8) is burned in a constant-volume bomb calorimeter at 298 K,...

When 1.799 g of naphtalene (C10H8) is burned in a constant-volume bomb calorimeter at 298 K, 72.31 kJ of heat is evolved.

Calculate U and w for the reaction on a molar basis.

Homework Answers

Answer #1

A bomb calorimeter is used to measure the change in internal energy, U, of a reaction at a constant volume.

U = qv = 72.31 KJ/mol

No. of moles of naphthalene (n) = mass given / molecular mass = 1.799 / 128.17 = 0.01403

Molar U = U / n = 72.31 / 0.01403 = 5165 KJ

Work Done, w = -pdV

For constant-volume bomb calorimeter dV = 0

Therefore, w = 0

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 0.373-g sample of naphthalene (C10H8) is burned in a bomb calorimeter and the temperature increases...
A 0.373-g sample of naphthalene (C10H8) is burned in a bomb calorimeter and the temperature increases from 24.90 °C to 27.80 °C. The calorimeter contains 1.05E3 g of water and the bomb has a heat capacity of 836 J/°C. Based on this experiment, calculate ΔE for the combustion reaction per mole of naphthalene burned (kJ/mol).
A quantity of 1.922 g of methanol (CH3OH) was burned in a constant-volume bomb calorimeter. Consequently,...
A quantity of 1.922 g of methanol (CH3OH) was burned in a constant-volume bomb calorimeter. Consequently, the temperature rose by 5.56°C. If the heat capacity of the bomb plus water was 8.09 kJ / °C, calculate the molar heat of combustion of methanol.
. A 0.500 g sample of naphthalene (C10H8) is burned in a bomb calorimeter containing 650...
. A 0.500 g sample of naphthalene (C10H8) is burned in a bomb calorimeter containing 650 grams of water at an initial temperature of 20.00 oC. After the reaction, the final temperature of the water is 26.4ºC. The heat capacity of the calorimeter is 420 J/oC. Using these data, calculate the heat of combustion of naphthalene in kJ/mol.
1 g of C6H6(l) (benzene) is burned in an adiabatic bomb calorimeter (constant volume). T before...
1 g of C6H6(l) (benzene) is burned in an adiabatic bomb calorimeter (constant volume). T before ignition was 20.826 °C and 25.000 °C after combustion (remember that the energy change of the bomb is opposite the energy change of the combustion). The heat capacity of the calorimeter was 10.000 kJ K-1. Calculate fHm for benzene at 298.15 K from this data (make sure to convert your enthalpies to molar values). Use the tables in the back of the book (resource...
Sulfur (2.56 g) is burned in a bomb calorimeter with excess O2(g). The temperature increases from...
Sulfur (2.56 g) is burned in a bomb calorimeter with excess O2(g). The temperature increases from 21.25 °C to 26.72 °C. The bomb has a heat capacity of 923 J/K, and the calorimeter contains 815 g of water. Calculate the heat evolved, per mole of SO2 formed, in the course of the reaction: S8(s) + 8 O2(g) --> 8 SO2(g) Answer is in kJ. A. 301.2 B. 3410 C. 296.3 D. 145.1
1. A bomb calorimeter, or a constant volume calorimeter, is a device often used to determine...
1. A bomb calorimeter, or a constant volume calorimeter, is a device often used to determine the heat of combustion of fuels and the energy content of foods. In an experiment, a 0.4137 g sample of bianthracene (C28H18) is burned completely in a bomb calorimeter. The calorimeter is surrounded by 1.361×103 g of water. During the combustion the temperature increases from 24.82 to 27.25 °C. The heat capacity of water is 4.184 J g-1°C-1. The heat capacity of the calorimeter...
A bomb calorimeter, or a constant volume calorimeter, is a device often used to determine the...
A bomb calorimeter, or a constant volume calorimeter, is a device often used to determine the heat of combustion of fuels and the energy content of foods. In an experiment, a 0.3833 g sample of phenanthrene (C14H10) is burned completely in a bomb calorimeter. The calorimeter is surrounded by 1.284×103 g of water. During the combustion the temperature increases from 22.04 to 24.54 °C. The heat capacity of water is 4.184 J g-1°C-1. The heat capacity of the calorimeter was...
A bomb calorimeter, or a constant volume calorimeter, is a device often used to determine the...
A bomb calorimeter, or a constant volume calorimeter, is a device often used to determine the heat of combustion of fuels and the energy content of foods. In an experiment, a 0.5265 g sample of bisphenol A (C15H16O2) is burned completely in a bomb calorimeter. The calorimeter is surrounded by 1.377×103 g of water. During the combustion the temperature increases from 21.79 to 24.65 °C. The heat capacity of water is 4.184 J g-1°C-1. The heat capacity of the calorimeter...
A 0.66 g sample of ethanol (MW = 33.0 g/mol) is burned in a bomb calorimeter...
A 0.66 g sample of ethanol (MW = 33.0 g/mol) is burned in a bomb calorimeter that has a heat capacity of 4.31 kJ/oC. The temperature of the calorimeter increases by 6.35oC. Calculate the molar heat of combustion of ethanol using the data from this experiment. Since this experiment is carried out under conditions of constant volume, we are measuring ∆E. Your answer should be in kJ/mol and entered to 3 sig. fig. ΔE =
A bomb calorimeter, or a constant volume calorimeter, is a device often used to determine the...
A bomb calorimeter, or a constant volume calorimeter, is a device often used to determine the heat of combustion of fuels and the energy content of foods. In an experiment, a 1.4170 g sample of L-ascorbic acid (C6H8O6) is burned completely in a bomb calorimeter. The calorimeter is surrounded by 1.354×103 g of water. During the combustion the temperature increases from 24.92 to 27.68 °C. The heat capacity of water is 4.184 J g-1°C-1. The heat capacity of the calorimeter...