Question

A ground state hydrogen atom absorbs a photon of light having a wavelength of 92.57 nm....

A ground state hydrogen atom absorbs a photon of light having a wavelength of 92.57 nm. It then gives off a photon having a wavelength of 954.3 nm. What is the final state of the hydrogen atom? Values for physical constants can be found here.

Homework Answers

Answer #1

Step 1:

wavelength = 92.57 nm

= 9.257*10^-8 m

Here photon will be captured and it will excite the atom

1/lambda = -R* (1/nf^2 - 1/ni^2)

R is Rydberg constant. R = 1.097*10^7 m-1

1/lambda = -R* (1/nf^2 - 1/ni^2)

1/9.257*10^-8 = - 1.097*10^7*(1/nf^2 - 1/1^2)

(1/nf^2 - 1/1^2) = -0.9847

1/nf^2 = 1.526*10^-2

nf^2 = 66

nf = 8

Step 2:

wavelength = 954.3 nm

= 9.543*10^-7 m

Here photon will be emitted

1/lambda = R* (1/nf^2 - 1/ni^2)

R is Rydberg constant. R = 1.097*10^7 m-1

1/lambda = R* (1/nf^2 - 1/ni^2)

1/9.543*10^-7 = 1.097*10^7*(1/nf^2 - 1/8^2)

(1/nf^2 - 1/8^2) = 9.552*10^-2

1/nf^2 = 0.1111

nf^2 = 9

nf = 3

Answer: 3

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A ground state hydrogen atom absorbs a photon of light having a wavelength of 92.27 nm....
A ground state hydrogen atom absorbs a photon of light having a wavelength of 92.27 nm. It then gives off a photon having a wavelength of 383.4 nm. What is the final state of the hydrogen atom? Values for physical constants can be found here. nf= please try to show solution
a ground state hydrogen atom absorbs a photon of light having a wavelength of 93.73 nm....
a ground state hydrogen atom absorbs a photon of light having a wavelength of 93.73 nm. it then gives off a photon having a wavelength of 410.1 nm. what is the final state of the hydrogen atom?
A ground state hydrogen atom absorbs a photon light having a wavelength of 92.57 nm. It...
A ground state hydrogen atom absorbs a photon light having a wavelength of 92.57 nm. It then gives off a photon having a wavelength of 1944 nm. What is the final state of the hydrogen atom? I got Nf=1.14 and it wasn't right
4 a) A hydrogen atom in the ground state absorbs a photon of wavelength 97.2 nm....
4 a) A hydrogen atom in the ground state absorbs a photon of wavelength 97.2 nm. What energy level does the electron reach? b) This excited atom then emits a photon of wavelength 1875.4 nm. What energy level does the electron fall to?
A hydrogen atom in the ground state absorbs a photon of wavelength 95.0 nm. What energy...
A hydrogen atom in the ground state absorbs a photon of wavelength 95.0 nm. What energy level does the electron reach? This excited atom then emits a photon of wavelength 434.1 nm. What energy level does the electron fall to? -I know this question has already been asked on Chegg but each question I go to has different calculations and I can't get the right answer.
A ground-state H atom absorbs a photon of wavelength 92.62 nm. What higher energy level did...
A ground-state H atom absorbs a photon of wavelength 92.62 nm. What higher energy level did the electron reach?
An atom emits a photon (bundle) of light having wavelength 486 nm. What is the frequency...
An atom emits a photon (bundle) of light having wavelength 486 nm. What is the frequency of the light? What is the energy of the photon?
An atom absorbs a photon with wavelength 500 nm and subsequently emits a photon with wavelength...
An atom absorbs a photon with wavelength 500 nm and subsequently emits a photon with wavelength 660 nm. a) Determine the energy absorbed by the atom. b) Assume that the atom is a solid particle with mass 3.3×10−26 kg and is initially at rest. Determine the speed of the atom after it has emitted the photon, assuming that any additional energy it acquired only contributed to its motion. Can you do part b step by step, which equations are required?
Will a photon of light of wavelength 480 nm excite an electron in the hydrogen atom...
Will a photon of light of wavelength 480 nm excite an electron in the hydrogen atom from the n=1 level to the n=2 level? Explain
A hydrogen atom in the fundamental state (first orbit) absorbs a photon of 93.7 nm, which...
A hydrogen atom in the fundamental state (first orbit) absorbs a photon of 93.7 nm, which corresponds to a transition line in the Lyman series. a) Determine the final state, n to which the electron arrives in this case. b) How does the state energy of part a) compare with the energy of the fundamental state (first orbit)? Express it mathematically. c) How does the size of the atom of the state of part a) compare with the size of...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT