Question

Find ΔG∘rxn for the reaction: N2O(g)+NO2(g)→3NO(g) Use the following reactions with known ΔG values: 2NO(g)+O2(g)→2NO2(g)ΔG∘rxn=−71.2kJ N2(g)+O2(g)→2NO(g)ΔG∘rxn=+175.2kJ...

Find ΔG∘rxn for the reaction: N2O(g)+NO2(g)→3NO(g) Use the following reactions with known ΔG values: 2NO(g)+O2(g)→2NO2(g)ΔG∘rxn=−71.2kJ N2(g)+O2(g)→2NO(g)ΔG∘rxn=+175.2kJ 2N2O(g)→2N2(g)+O2(g)ΔG∘rxn=−207.4kJ

Homework Answers

Answer #1

N2O(g)+NO2(g) → 3NO(g) : ΔG = ?    ------(1)

2NO(g)+O2(g) → 2NO2(g)   : ΔG1 = −71.2kJ      -----(2)

N2(g)+O2(g) → 2NO(g)   : ΔG2 = +175.2kJ    --------(3)

2N2O(g) → 2N2(g)+O2(g)    : ΔG3 = −207.4kJ    -------(4)

Equ(1) can be obtained from the remaining three equations as follows:

Eqn(1) = [(1/2) x reverse of Eqn(2) ]+Eqn(3) + [(1/2)xEqn(4)]

ΔG = [(1/2)x (-ΔG1 ) ] + ΔG2 + [(1/2) x ΔG3 ]

      = [(1/2) x (-(-71.2 kJ))] + 175.2 kJ + [(1/2x(-207.4kJ)]

      = +107.1 kJ

Therefore ΔGrxn for the reaction: N2O(g)+NO2(g) → 3NO(g) is +107.1 kJ

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Calculate the enthalpy of the reaction 2NO(g)+O2(g)→2NO2(g) given the following reactions and enthalpies of formation: 12N2(g)+O2(g)→NO2(g),   ΔH∘A=33.2...
Calculate the enthalpy of the reaction 2NO(g)+O2(g)→2NO2(g) given the following reactions and enthalpies of formation: 12N2(g)+O2(g)→NO2(g),   ΔH∘A=33.2 kJ 12N2(g)+12O2(g)→NO(g),  ΔH∘B=90.2 kJ
Consider these reactions and their corresponding K's. 1/2N2+ O2 yields NO2 K1 2NO2 yields 2NO +...
Consider these reactions and their corresponding K's. 1/2N2+ O2 yields NO2 K1 2NO2 yields 2NO + O2 K2 NOBr yields NO + 1/2Br2   K3 Express the K value for the reaction below in terms of K1, K2 and K3 1/2N2+ 1/2O2 + 1/2Br2 yields NOBr K=?
Consider the following reaction: 2NO(g)+O2(g)→2NO2(g) Estimate ΔG∘ for this reaction at each of the following temperatures...
Consider the following reaction: 2NO(g)+O2(g)→2NO2(g) Estimate ΔG∘ for this reaction at each of the following temperatures and predict whether or not the reaction will be spontaneous. (Assume that ΔH∘ and ΔS∘ do not change too much within the give temperature range.) A) 298K B) 733K C) 853K
1.             Given the equations:                          N2(g) + O
1.             Given the equations:                          N2(g) + O2(g) ® 2NO(g)                    ∆H = +180.7 kJ                                                                                                                                                                 2NO(g) + O2(g) ® 2NO2(g)              ∆H = -113.1 kJ                                                                                                                                                                 2N2O(g) ® 2N2(g) + O2(g)                ∆H = -163.2 kJ Calculate the change in enthalpy for the reaction:       N2O(g) + NO2(g) ® 3NO(g) _______________                                                                                                                                                                                                                                                                                                                                                                                                                             2.   An electron in a carbon atom makes a transition from n=2 to n=3. a) Does this transition require energy or emit energy?                                                               _________________ b) Can...
Consider the following reaction: 2NO(g)+O2(g)→2NO2(g) Estimate ΔG∘ for this reaction at each of the following temperatures...
Consider the following reaction: 2NO(g)+O2(g)→2NO2(g) Estimate ΔG∘ for this reaction at each of the following temperatures and predict whether or not the reaction will be spontaneous. (Assume that ΔH∘ and ΔS∘ do not change too much within the give temperature range.)    1. 298 2. 722 3. 860
Consider the following reaction: 2NO(g)+O2(g)→2NO2(g) Estimate ΔG∘ for this reaction at each of the following temperatures...
Consider the following reaction: 2NO(g)+O2(g)→2NO2(g) Estimate ΔG∘ for this reaction at each of the following temperatures and predict whether or not the reaction will be spontaneous. (Assume that ΔH∘ and ΔS∘ do not change too much within the give temperature range.) a. 298 K b. 721 K c. 853 K
Consider the following reaction occurring at 298 K: N2O(g)+NO2(g)⇌3NO(g) Part A Show that the reaction is...
Consider the following reaction occurring at 298 K: N2O(g)+NO2(g)⇌3NO(g) Part A Show that the reaction is not spontaneous under standard conditions by calculating ΔG∘rxn. Part B If a reaction mixture contains only N2O and NO2 at partial pressures of 1.0 atm each, the reaction will be spontaneous until some NO forms in the mixture. What maximum partial pressure of NO builds up before the reaction ceases to be spontaneous? Part C Can the reaction be made more spontaneous by an...
the following data were obtained for the reaction, 2NO2(g)-->2NO (g) + O2. Times   (NO2) 0   0.8333...
the following data were obtained for the reaction, 2NO2(g)-->2NO (g) + O2. Times   (NO2) 0   0.8333 20   0.4167 40   0.2778 60   0.2083 c) what is the reaction order with respect to NO2? explain D) write the rate law for this equation
Use the information in the table below to determine DGofor the reaction 2NH3(g) + 2O2(g) -->...
Use the information in the table below to determine DGofor the reaction 2NH3(g) + 2O2(g) --> N2O(g) + 3H2O(l) DGo (kJ) N2(g) + 3H2(g) --> 2NH3(g) -33.0 4NH3(g) + 5O2(g) --> 4NO(g) + 6H2O(l) -1010.0 N2(g) + O2(g) --> 2NO(g) 174.9 N2(g) + 2O2(g) --> 2NO2(g) 102.6 2N2(g) + O2(g) --> 2N2O(g) 204.2
The decomposition of NO2 2NO2(g) → 2NO(g) + O2(g) is second-order in NO2. Given that the...
The decomposition of NO2 2NO2(g) → 2NO(g) + O2(g) is second-order in NO2. Given that the half-life for the inital concentration of NO2 equal to 0.848 M is 221 s, find the concentration of NO2 after 663 s.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT