Question

A 3.670-g sample of a solid, weak, monoprotic acid is used to make 100.0 mL of...

A 3.670-g sample of a solid, weak, monoprotic acid is used to make 100.0 mL of solution. 20.0 mL of this solution was titrated with 0.07662-M NaOH. The pH after the addition of 23.98 mL of base was 5.90, and the equivalence point was reached with the addition of 44.00 mL of base. a) How many millimoles of acid are in the original solid sample? Hint: Don't forget the dilution. mmol acid b) What is the molar mass of the acid? g/mol c) What is the pKa of the acid? pKa =

Homework Answers

Answer #1

moles NaOH at the equivalence point = 0.044 L x 0.07662 M =
= 0.00337

moles unknown acid in 20.0 mL= 0.00337

moles unknown acid in 100 mL = 0.00337 x 100 / 60=0.00561 = 5.61 mmoles

molar mass unknown acid = 3.670 g/0.00561 mol= 655.35g/mol

moles NaOH ( after the addition of 23.98 mL )= 0.02398 L x 0.07057 M=0.00183

moles acid = 3.670 g/ 655.35 g/mol=0.0056( in 100 mL)

moles acid in 60 mL = 0.0056 x 60/100=0.00336

HA + OH- => A- + H2O
moles acid = 0.00336 - 0.00183=0.00153
moles A- = 0.00183

total volume = 60 + 23.98 = 83.98 mL = 0.083 L

[HA]= 0.00153/ 0.083=0.0184 M
[A-]= 0.00183 / 0.083 =0.022 M

5.90 = pKa + log 0.022/ 0.0184 = pKa + 0.0784

pKa =5.82

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 1.224-g sample of a solid, weak, monoprotic acid is used to make 100.0 mL of...
A 1.224-g sample of a solid, weak, monoprotic acid is used to make 100.0 mL of solution. 55.0 mL of this solution was titrated with 0.08096-M NaOH. The pH after the addition of 12.88 mL of base was 7.00, and the equivalence point was reached with the addition of 41.81 mL of base. a) How many millimoles of acid are in the original solid sample? Hint: Don't forget the dilution. mmol acid b) What is the molar mass of the...
A 1.550-g sample of a solid, weak, monoprotic acid is used to make 100.0 mL of...
A 1.550-g sample of a solid, weak, monoprotic acid is used to make 100.0 mL of solution. 25.0 mL of this solution was titrated with 0.06307-M NaOH. The pH after the addition of 15.77 mL of base was 4.73, and the equivalence point was reached with the addition of 37.11 mL of base. a) How many millimoles of acid are in the original solid sample? Hint: Don't forget the dilution. mmol acid b) What is the molar mass of the...
A 2.211-g sample of a solid, weak, monoprotic acid is used to make 100.0 mL of...
A 2.211-g sample of a solid, weak, monoprotic acid is used to make 100.0 mL of solution. 30.0 mL of this solution was titrated with 0.06886-M NaOH. The pH after the addition of 25.59 mL of base was 4.22, and the equivalence point was reached with the addition of 41.47 mL of base. a) How many millimoles of acid are in the original solid sample? Hint: Don't forget the dilution. mmol acid b) What is the molar mass of the...
A 1.074-g sample of a solid, weak, monoprotic acid is used to make 100.0 mL of...
A 1.074-g sample of a solid, weak, monoprotic acid is used to make 100.0 mL of solution. 40.0 mL of this solution was titrated with 0.06810-M NaOH. The pH after the addition of 24.91 mL of base was 4.77, and the equivalence point was reached with the addition of 37.97 mL of base. a) How many millimoles of acid are in the original solid sample? Hint: Don't forget the dilution. _______ mmol acid b) What is the molar mass of...
A 1.731-g sample of a solid, weak, monoprotic acid is used to make 100.0 mL of...
A 1.731-g sample of a solid, weak, monoprotic acid is used to make 100.0 mL of solution. 45.0 mL of this solution was titrated with 0.09322-M NaOH. The pH after the addition of 11.78 mL of base was 4.23, and the equivalence point was reached with the addition of 36.47 mL of base. a) How many millimoles of acid are in the original solid sample? Hint: Don't forget the dilution. ______mmol acid b) What is the molar mass of the...
A 5.171 g sample of a solid, weak, monoprotic acid is used to make a 100.0...
A 5.171 g sample of a solid, weak, monoprotic acid is used to make a 100.0 mL solution. 26.00 mL of the resulting acid solution is then titrated with 0.09671 M NaOH. The pH after the addition of15.00 mL of the base is 5.51, and the endpoint is reached after the addition of 47.85 mL of the base. (b) What is the molar mass of the acid? (c) What is the pKa of the acid?
A 0.6071 g sample of a weak monoprotic acid was titrated to its endpoint using 0.1325...
A 0.6071 g sample of a weak monoprotic acid was titrated to its endpoint using 0.1325 M NaOH. The initial volume of NaOH was 0.58 mL. The final volume of NaOH was 37.98 mL. What is the molar mass of the weak monoprotic acid? Show all work.
A certain weak acid, HA, with a Ka value of 5.61×10−6, is titrated with NaOH. 1)A...
A certain weak acid, HA, with a Ka value of 5.61×10−6, is titrated with NaOH. 1)A solution is made by titrating 9.00 mmol (millimoles) of HA and 1.00 mmol of the strong base. What is the resulting pH? 2)More strong base is added until the equivalence point is reached. What is the pH of this solution at the equivalence point if the total volume is 41.0 mL ?
A sample of 0.2140 g of an unknown monoprotic acid was dissolved in 25.0 mL of...
A sample of 0.2140 g of an unknown monoprotic acid was dissolved in 25.0 mL of water and titrated with 0.0950MNaOH. The acid required 27.4 mL of base to reach the equivalence point. What is the molar mass of the acid?
1. A 0.312 g of an unknown acid (monoprotic) was dissolved in 26.5 mL of water...
1. A 0.312 g of an unknown acid (monoprotic) was dissolved in 26.5 mL of water and titrated with 0.0850 M NaOH. The acid required 28.5 mL of base to reach the equivalence point. What is the molar mass of the acid? After 16.0 mL of base had been added in the titration, the pH was found to be 6.45. What is the Ka for the unknown acid?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT