Question

Consider a laser pointer that emits red light with wavelength 650 nm. This light is used...

Consider a laser pointer that emits red light with wavelength 650 nm. This light is used for a photoelectric effect experiment where the anode in the evacuated glass tube is made up of a material that has work function equal to 1 eV.

[1] What is the energy of an individual photon that comes out of the laser pointer?

[2] What is the maximum kinetic energy of an emitted electron?

Homework Answers

Answer #1

1) The energy of a photon is given by the equation E = hc/λ

where E is the energy, Planck's constant h = 6.626 x 10-34 Js, c = 3.00 x 108 m/s (speed of light), λ is the wavelength of the light (in metres).

So in your case, λ = 650 x 10-9 m, so the energy of one photon is:

E = (6.626 x 10-34 3.00 x 108)/650 x 10-9 = 3.058 10-19 J = 1.91 eV

2) According to photoelectric effect,
max. K.E of electron = energy of incident photon - work function

max. K.E of electron = 1.91 - 1 = 0.91 eV

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A red laser pointer emits light with wavelength 488 nm. If the laser emits 7.5 x...
A red laser pointer emits light with wavelength 488 nm. If the laser emits 7.5 x 10–4 J of energy per second, how many photons per second are emitted from the laser?
Light of wavelength 235 nm is incident on Magnesium in a photoelectric effect experiment. The work...
Light of wavelength 235 nm is incident on Magnesium in a photoelectric effect experiment. The work function of Magnesium is 3.68 eV. (a) What is the maximum kinetic energy of the emitted electrons, in eV? (b)What is the maximum velocity of the emitted electrons, in m/s? (c) What is the stopping potential, in Volts, that results in no collected photoelectrons? (d) Light of wavelength 235 nm is now incident on lead (work function 5.40 eV). What is the maximum kinetic...
The hydrogen emission spectrum produces light at 430 nm (blue), 480 nm (blue-green) and 650 nm...
The hydrogen emission spectrum produces light at 430 nm (blue), 480 nm (blue-green) and 650 nm (red). Find the energy in Joules and then in eV for a photon at each of these wavelengths: 430 nm: 480 nm: 650 nm: A metal surface has a work function (W0) of 2.7 eV.  Of the three wavelengths of light in the hydrogen spectrum, which would be able to release electrons from the metal surface? Calculate the kinetic energy in eV if any, of...
a) A photon of wavelength 43 nm is incident upon a metal in a photoelectric apparatus....
a) A photon of wavelength 43 nm is incident upon a metal in a photoelectric apparatus. A stopping voltage of 21 V was obtained. What is the threshold frequency of the metal? (format of a.b x 10cdHz) b) Light with a frequency of 5.00 x 1014 Hz illuminates a photoelectric surface that has a work function of 2.10 x 10-19 J. What is the maximum kinetic energy of the emitted photoelectrons? (format of a.bc x 10-de J ) c) Light...
The “electric eyes” used to open doors automatically are based on the photoelectric effect. The metal...
The “electric eyes” used to open doors automatically are based on the photoelectric effect. The metal surface inside the “eye” [an evacuated glass chamber containing the surface (cathode) and a photocurrent collector (anode)] continuously provides current until the light beam that actuates it is interrupted. a. What is the maximum kinetic energy of photoelectrons produced by a mercury vapor lamp which emits 436 nm violet light causing the actuation of an electric eye of work function 2.1 eV? b. What...
2a) When a metal surface is illuminated by light of wavelength 310 nm, the measured maximum...
2a) When a metal surface is illuminated by light of wavelength 310 nm, the measured maximum kinetic energy of the emitted electrons is 0.50 eV. Calculate the metal plate’s work function φ in units of eV. b) In the rest frame of an ejected electron from the photoelectric experiment in part a), an incident γ-ray with an energy of 0.25 MeV interacts with the electron. Following the collision, the γ-ray has a final energy of 0.1 MeV. Calculate the angle...
The YAG Laser in the Laser Laboratory is a pulsed laser that emits infrared light of...
The YAG Laser in the Laser Laboratory is a pulsed laser that emits infrared light of wavelength 1064 nm at a frequency of 10 Hz. Suppose that one pulse from the YAG Laser has an average energy of 1.2 J and lasts for a time of 14 ns. What is the energy (in eV) of one photon of this laser light? How many photons are emitted in one pulse from the YAG Laser? What is the power output (in W)...
When you irradiate a metal with light of wavelength 447 nm in an investigation of the...
When you irradiate a metal with light of wavelength 447 nm in an investigation of the photoelectric effect, you discover that a potential difference of 1.43 V is needed to reduce the current to zero. What is the energy of a photon of this light in electron volts? energy of a photon: eV Find the work function of the irradiated metal in electron volts. work function:
A red laser emits a pulse of light every 10 ms. If the laser operates at...
A red laser emits a pulse of light every 10 ms. If the laser operates at a wavelength of 695 nm and 50 W, calculate the number of photons emitted during a pulse. (1 W = 1 J/s).
A photon with a wavelength of 2.47 nm strikes a surface and emits an electron with...
A photon with a wavelength of 2.47 nm strikes a surface and emits an electron with kinetic energy of 228 eV (electron volts). What is the binding energy of the electron in J? Round your answer to 2 sig figs. 1 electron volt = 1.602 x 10-19 J