Question

A solution contains 0.0500 M Co3 (aq), 0.0230 M S2–(aq), and 2.45 M NH3. Cobalt(III) ions...

A solution contains 0.0500 M Co3 (aq), 0.0230 M S2–(aq), and 2.45 M NH3. Cobalt(III) ions in aqueous solutions complex with NH3 to produce Co(NH3)63 . (Kf = 5.0 x 1031) What will be the concentration of Co3 (aq) when Co(NH3)63 forms?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A solution contains 0.0500 M Co3 (aq), 0.0280 M S2–(aq), and 1.85 M NH3. Cobalt(III) ions...
A solution contains 0.0500 M Co3 (aq), 0.0280 M S2–(aq), and 1.85 M NH3. Cobalt(III) ions in aqueous solutions complex with NH3 to produce Co(NH3)63 . (Kf = 5.0 x 1031) What will be the concentration of Co3 (aq) when Co(NH3)63 forms? [Co3] = M Will Co2S3 precipitate? (Ksp = 4.0 x 10–21) yes/no
A solution contains 0.0500 M Co3 (aq), 0.0270 M S2–(aq), and 1.65 M NH3. Cobalt(III) ions...
A solution contains 0.0500 M Co3 (aq), 0.0270 M S2–(aq), and 1.65 M NH3. Cobalt(III) ions in aqueous solutions complex with NH3 to produce Co(NH3)63 . (Kf = 5.0 x 1031) (Part 1) What will be the concentration of Co3 (aq) when Co(NH3)63 forms? (Part 2) Will Co2S3 precipitate? (Ksp = 4.0 x 10–21)​
A solution contains 0.0500 M Co^3+ (aq), 0.0290 M S^2–(aq), and 1.65 M NH3. Cobalt(III) ions...
A solution contains 0.0500 M Co^3+ (aq), 0.0290 M S^2–(aq), and 1.65 M NH3. Cobalt(III) ions in aqueous solutions complex with NH3 to produce Co(NH3)6^(3+) . (Kf = 5.0 x 10^31) What will be the concentration of Co3 (aq) when Co(NH3)6^3+ forms? Will Co2S3 precipitate? (Ksp = 4.0 x 10–21)
In the presence of aqueous ammonia, cobalt(III) forms the complex ion Co(NH3)63+. Determine the molar concentration...
In the presence of aqueous ammonia, cobalt(III) forms the complex ion Co(NH3)63+. Determine the molar concentration of free cobalt(III) ion in solution when 0.170 mole of Co(NO3)3 is dissolved in a liter of 2.50 M aqueous ammonia.
In the presence of aqueous ammonia, cobalt (III) forms the complex ion Co(NH3)6 3+. Determine the...
In the presence of aqueous ammonia, cobalt (III) forms the complex ion Co(NH3)6 3+. Determine the molar concentration of free cobalt (III) ion in solution when 0.250 mole of Co(NO3)3 is dissolved in a liter of 2.50 M aqueous ammonia.
A 0.130-mole quantity of CoCl2 is added to a liter of 1.20 M NH3 solution. What...
A 0.130-mole quantity of CoCl2 is added to a liter of 1.20 M NH3 solution. What is the concentration of Co2 ions at equilibrium? Assume the formation constant* of Co(NH3)62+ is 5.0 × 1031 M–6. The balanced equation is: Co2+ + 6NH3 <==> Co(NH3)62+ The ICE table is: I:    0.13,      1.2,    0 C:      -x,       -6x,   +x E: 0.13-x, 1.2-6x,    x k=[Co(NH3)62+]/[(Co2+)(NH3)6] 5.0x1031=(x)/[(0.13-x)(1.2-6x)6]
You have synthesized a redox reagent that is a complex between cobalt and six ammonia molecules...
You have synthesized a redox reagent that is a complex between cobalt and six ammonia molecules ([Co(NH3)6] 3+/2+). It cycles between the Co(II) and Co(III) oxidation states. Unfortunately, after you complete your synthesis, you learn that your potentiostat is broken and you have no way to measure the reduction potential of your compound. Fortunately, you realize that you have sufficient information from other experiments and from data tables to determine the potential for this reagent. This information is: The standard...
The complex ion Cu(NH3)42 is formed in a solution made of 0.0300 M Cu(NO3)2 and 0.400...
The complex ion Cu(NH3)42 is formed in a solution made of 0.0300 M Cu(NO3)2 and 0.400 M NH3. What are the concentrations of Cu2 , NH3, and Cu(NH3)42 at equilibrium? The formation constant*, Kf, of Cu(NH3)42 is 1.70 × 1013. This is what the hint gave me, Since the formation constant, Kf, is very large, it can be assumed that the reaction goes nearly to completion to form Cu(NH3)42 . Cu2 is the limiting reagent and will be used up...
3) Cerium(IV) sulfate  is used to titrate a solution of iron(II) ions, with which it reacts according...
3) Cerium(IV) sulfate  is used to titrate a solution of iron(II) ions, with which it reacts according to Ce4+(aq) + Fe2+(aq) = Ce3+(aq) + Fe3+(aq) A cerium(IV) sulfate solution is prepared by dissolving 38.14 g of Ce(SO4)2 in water and diluting to a total volume of 1.000 L. A total of 17.82 mL of this solution is required to reach the endpoint in a titration of a 250.0-mL sample containing Fe2+(aq). Determine the concentration of Fe2+ in the original solution. answer:...
1.) You will work with 0.10 M acetic acid and 17 M acetic acid in this...
1.) You will work with 0.10 M acetic acid and 17 M acetic acid in this experiment. What is the relationship between concentration and ionization? Explain the reason for this relationship 2.) Explain hydrolysis, i.e, what types of molecules undergo hydrolysis (be specific) and show equations for reactions of acid, base, and salt hydrolysis not used as examples in the introduction to this experiment 3.) In Part C: Hydrolysis of Salts, you will calibrate the pH probe prior to testing...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT