Question

The equilibrium constant, K, for the following reaction is 1.80×10-2 at 698 K. 2HI(g) H2(g) +...

The equilibrium constant, K, for the following reaction is 1.80×10-2 at 698 K. 2HI(g) H2(g) + I2(g) An equilibrium mixture of the three gases in a 1.00 L flask at 698 K contains 0.325 M HI, 4.36×10-2 M H2 and 4.36×10-2 M I2. What will be the concentrations of the three gases once equilibrium has been reestablished, if 2.27×10-2 mol of I2(g) is added to the flask?

[HI] = _____M

[H2] = ____M

[I2] = _____M

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The equilibrium constant, K, for the following reaction is 1.80×10-2 at 698 K. 2HI(g) --> H2(g)...
The equilibrium constant, K, for the following reaction is 1.80×10-2 at 698 K. 2HI(g) --> H2(g) + I2(g) An equilibrium mixture of the three gases in a 1.00 L flask at 698 K contains 0.322 M HI,   4.33×10-2 M H2 and 4.33×10-2 M I2. What will be the concentrations of the three gases once equilibrium has been reestablished, if 0.213 mol of HI(g) is added to the flask? [HI] = M [H2] = M [I2] = M
The equilibrium constant, Kc, for the following reaction is 1.80×10-2 at 698 K. 2HI(g)------> H2(g) +...
The equilibrium constant, Kc, for the following reaction is 1.80×10-2 at 698 K. 2HI(g)------> H2(g) + I2(g) Calculate the equilibrium concentrations of reactant and products when 0.311 moles of HI are introduced into a 1.00 L vessel at 698 K. [HI]= ___ M [H2]= ___M [I2]= ____M
The equilibrium constant, Kc, for the following reaction is 1.80×10-2 at 698 K. 2HI(g) <----<>H2(g) +...
The equilibrium constant, Kc, for the following reaction is 1.80×10-2 at 698 K. 2HI(g) <----<>H2(g) + I2(g) Calculate the equilibrium concentrations of reactant and products when 0.249 moles of HI are introduced into a 1.00 L vessel at 698 K. [HI] = M [H2] = M [I2] = M
The equilibrium constant, Kc, for the following reaction is 55.6 at 698 K. H2 (g) +...
The equilibrium constant, Kc, for the following reaction is 55.6 at 698 K. H2 (g) + I2 (g) forward and reverse arrows 2 HI (g) Calculate the equilibrium concentrations of reactants and product when 0.383 moles kf H2 and 0.383 moles of I2 are introduced into a 1.00 L vessel at 698 K. [H2] = M [I2] = M [HI] = M
The equilibrium constant, K, for the following reaction is 1.80×10-4 at 298 K. NH4HS(s) NH3(g) +...
The equilibrium constant, K, for the following reaction is 1.80×10-4 at 298 K. NH4HS(s) NH3(g) + H2S(g) An equilibrium mixture of the solid and the two gases in a 1.00 L flask at 298 K contains 0.231 mol NH4HS, 1.34×10-2 M NH3 and 1.34×10-2 M H2S. If the concentration of H2S(g) is suddenly increased to 2.08×10-2 M, what will be the concentrations of the two gases once equilibrium has been reestablished? [NH3] = M [H2S] = M please finish it...
The equilibrium constant, K, for the following reaction is 1.29×10-2 at 600 K. COCl2(g) CO(g) +...
The equilibrium constant, K, for the following reaction is 1.29×10-2 at 600 K. COCl2(g) CO(g) + Cl2(g) An equilibrium mixture of the three gases in a 1.00 L flask at 600 K contains 0.244 M COCl2, 5.61×10-2 M CO and 5.61×10-2 M Cl2. What will be the concentrations of the three gases once equilibrium has been reestablished, if 3.44×10-2 mol of CO(g) is added to the flask? [COCl2] = M [CO] = M [Cl2] = M
The equilibrium constant, K, for the following reaction is 10.5 at 350 K. 2CH2Cl2(g) CH4(g) +...
The equilibrium constant, K, for the following reaction is 10.5 at 350 K. 2CH2Cl2(g) CH4(g) + CCl4(g) An equilibrium mixture of the three gases in a 1.00 L flask at 350 K contains 5.09E-2 M CH2Cl2, 0.165 M CH4 and 0.165 M CCl4. What will be the concentrations of the three gases once equilibrium has been reestablished, if 3.82E-2 mol of CH2Cl2(g) is added to the flask? [CH2Cl2] = M [CH4] = M [CCl4] = M The equilibrium constant, K,...
The equilibrium constant, K, for the following reaction is 10.5 at 350 K. 2CH2Cl2(g) CH4(g) +...
The equilibrium constant, K, for the following reaction is 10.5 at 350 K. 2CH2Cl2(g) CH4(g) + CCl4(g) An equilibrium mixture of the three gases in a 1.00 L flask at 350 K contains 5.19×10-2 M CH2Cl2, 0.168 M CH4 and 0.168 M CCl4. What will be the concentrations of the three gases once equilibrium has been reestablished, if 0.133 mol of CH4(g) is added to the flask? [CH2Cl2] =____ M [CH4] = ______M [CCl4] = ______M
For the reaction H2 + I2 (g)2HI (g) with Kc = 54.3 at 698 K, if...
For the reaction H2 + I2 (g)2HI (g) with Kc = 54.3 at 698 K, if the initial amounts were 0.800 mole H2 and 0.500 mole I2 in a 5.25-L vessel at 698 K, write the ICE table, and what will be the amounts of reactants and products (in mole(s)) when equilibrium is attained?
The equilibrium constant, K, for the following reaction is 5.10×10-6 at 548 K. NH4Cl(s) --> NH3(g)...
The equilibrium constant, K, for the following reaction is 5.10×10-6 at 548 K. NH4Cl(s) --> NH3(g) + HCl(g) An equilibrium mixture of the solid and the two gases in a 1.00 L flask at 548 K contains 0.255 mol NH4Cl, 2.26×10-3 M NH3 and 2.26×10-3 M HCl. If the concentration of HCl(g) is suddenly increased to 3.55×10-3 M, what will be the concentrations of the two gases once equilibrium has been reestablished? [NH3] = M [HCl] = M
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT