Question

9.00g of a certain Compound X, known to be made of carbon, hydrogen and perhaps oxygen,...

9.00g of a certain Compound X, known to be made of carbon, hydrogen and perhaps oxygen, and to have a molecular molar mass of 70./gmol, is burned completely in excess oxygen, and the mass of the products carefully measured:

product mass
carbon dioxide

28.29g

water

11.58g

Use this information to find the molecular formula of X

.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
8.00g of a certain Compound X, known to be made of carbon, hydrogen and perhaps oxygen,...
8.00g of a certain Compound X, known to be made of carbon, hydrogen and perhaps oxygen, and to have a molecular molar mass of 46./gmol, is burned completely in excess oxygen, and the mass of the products carefully measured: product mass carbon dioxide 15.31g water 9.40g Use this information to find the molecular formula of X .
combustion of 1.00 g of a common analgesic which is composed of carbon, hydrogen, oxygen produced...
combustion of 1.00 g of a common analgesic which is composed of carbon, hydrogen, oxygen produced 2.20g of carbon dioxide, CO2 and 0.440 grams of water. The molar mass of this compound is known to be between 170 and 190 g. Determine the molecular formula of the compound.
A, an unknown compound, is composed of only carbon and hydrogen. When 95.2g of A was...
A, an unknown compound, is composed of only carbon and hydrogen. When 95.2g of A was completely burned, 85.6g of water was produced. If the mass of A has a value between 115 g/mol and 125 g/mol, obtain A's experimental and molecular formula. Also, calculate the mass of carbon dioxide produced by this reaction.
A 2.52g sample of a compound containing only carbon, hydrogen, nitrogen, oxygen, and sulfur was burned...
A 2.52g sample of a compound containing only carbon, hydrogen, nitrogen, oxygen, and sulfur was burned in excess O to yield 3.87g of CO2 and 0.792g of H2O as the only carbon and hydrogen containing products respectively. Another sample of the same compound, of mass 4.14g , yielded 2.31g of SO3 as the only sulfur containing product. A third sample, of mass 5.66g , was burned under different conditions to yield 2.49g of HNO3 as the only nitrogen containing product....
Compound X contains only carbon,nitrogen,hydrogen,oxygen and sulfur. Analysis experiments produced the following results: 1. 2.52g of...
Compound X contains only carbon,nitrogen,hydrogen,oxygen and sulfur. Analysis experiments produced the following results: 1. 2.52g of X burned in excess O2 produces 4.25g of carbon dioxide and 1.02g of water at 100% yield. 2. 4.14g of X reacts to produce 1.785g of sulfur trioxide and 85% yield. 3. 5.66g of X reacts to produce 1.680g of nitric acid at 75% yield. What is the empirical formula of compound X?
A 27.129 mg sample of a chemical known to contain only carbon, hydrogen, sulfur, and oxygen...
A 27.129 mg sample of a chemical known to contain only carbon, hydrogen, sulfur, and oxygen is put into a combustion analysis apparatus, yielding 48.328 mg of carbon dioxide and 19.783 mg of water. In another experiment, 20.101 mg of the compound is reacted with excess oxygen to produce 8.6877 mg of sulfur dioxide. Add subscripts below to correctly identify the empirical formula of this compound (use this order of elements: CHSO).
A 23.113 mg sample of a chemical known to contain only carbon, hydrogen, sulfur, and oxygen...
A 23.113 mg sample of a chemical known to contain only carbon, hydrogen, sulfur, and oxygen is put into a combustion analysis apparatus, yielding 41.174 mg of carbon dioxide and 16.855 mg of water. In another experiment, 20.101 mg of the compound is reacted with excess oxygen to produce 8.6877 mg of sulfur dioxide. Add subscripts below to correctly identify the empirical formula of this compound (use this order of elements: CHSO).
A 24.117 mg sample of a chemical known to contain only carbon, hydrogen, sulfur, and oxygen...
A 24.117 mg sample of a chemical known to contain only carbon, hydrogen, sulfur, and oxygen is put into a combustion analysis apparatus, yielding 42.963 mg of carbon dioxide and 17.587 mg of water. In another experiment, 32.443 mg of the compound is reacted with excess oxygen to produce 14.022 mg of sulfur dioxide. Add subscripts below to correctly identify the empirical formula of this compound (use this order of elements: CHSO).
A 29.137 mg sample of a chemical known to contain only carbon, hydrogen, sulfur, and oxygen...
A 29.137 mg sample of a chemical known to contain only carbon, hydrogen, sulfur, and oxygen is put into a combustion analysis apparatus, yielding 51.905 mg of carbon dioxide and 21.248 mg of water. In another experiment, 31.321 mg of the compound is reacted with excess oxygen to produce 13.537 mg of sulfur dioxide. Add subscripts below to correctly identify the empirical formula of this compound (use this order of elements: CHSO).
A 36.165 mg sample of a chemical known to contain only carbon, hydrogen, sulfur, and oxygen...
A 36.165 mg sample of a chemical known to contain only carbon, hydrogen, sulfur, and oxygen is put into a combustion analysis apparatus, yielding 64.425 mg of carbon dioxide and 26.373 mg of water. In another experiment, 43.663 mg of the compound is reacted with excess oxygen to produce 18.871 mg of sulfur dioxide. Add subscripts below to correctly identify the empirical formula of this compound (use this order of elements: CHSO).