Question

A 1.000-mL sample of unknown containing Co2+ and Ni2+ was treated with 25.00 mL of 0.03872...

A 1.000-mL sample of unknown containing Co2+ and Ni2+ was treated with 25.00 mL of 0.03872 M EDTA. Back titration with 0.02127 M Zn2+ at pH 5 required 23.54 mL to reach the xylenol orange endpoint. A 2.000-mL sample of unknown was passed through an ion exchange column that retards Co2+ more than Ni2+. The Ni2+ that passed through the column was treated with 25.00 mL of 0.03872 M EDTA and required 25.63 mL of 0.02127 M Zn2+ for back titration. The Co2+ emerged from the column later. It, too, was treated with 25.00 mL of 0.03872 M EDTA. How many milliliters of 0.02127 M Zn2+ will be required for back titration?

Homework Answers

Answer #1

In 1.00 ml sample of Ni2+ and Co2+

Total EDTA added initially = 0.03872 M x 25 ml = 0.968 mmol

Total unused EDTA remained is back titrated with Zn2+ = 0.02127 M x 23.54 ml = 0.5007 mmol

Total moles of EDTA reacted with Co2+ and Ni2+ = 0.968 - 0.5007 = 0.4673 mmol

Now, 2.00 ml unknown sample passed through column

So total Ni2+ and Co2+ present = 2 x 0.4673 = 0.9346 mmol

Total EDTA added in first step = 0.03872 M x 25 ml = 0.968 mmol

Total unused EDTA back titrated with Zn2+ = 0.02127 M x 23.63 ml = 0.5026 mmol

Actual moles of EDTA reacted with Ni2+ = 0.968 - 0.5026 = 0.4654 mmol

Total EDTA added in second step = 0.03872 M x 25 ml = 0.968 mmol

moles of Co2+ to be present in 2.00 ml unknown = 0.9346 - 0.4654 = 0.4692 mmol

Milliliters of Zn2+ needed for back titration = 0.4692 mmol/0.02127 M = 22.06 ml

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 1.000-mL aliquot of a solution containing Cu2 and Ni2 is treated with 25.00 mL of...
A 1.000-mL aliquot of a solution containing Cu2 and Ni2 is treated with 25.00 mL of a 0.03828 M EDTA solution. The solution is then back titrated with 0.02192 M Zn2 solution at a pH of 5. A volume of 15.73 mL of the Zn2 solution was needed to reach the xylenol orange end point. A 2.000-mL aliquot of the Cu2 and Ni2 solution is fed through an ion-exchange column that retains Ni2 . The Cu2 that passed through the...
A 1.000-mL aliquot of a solution containing Cu2 and Ni2 is treated with 25.00 mL of...
A 1.000-mL aliquot of a solution containing Cu2 and Ni2 is treated with 25.00 mL of a 0.05231 M EDTA solution. The solution is then back titrated with 0.02324 M Zn2 solution at a pH of 5. A volume of 20.98 mL of the Zn2 solution was needed to reach the xylenol orange end point. A 2.000-mL aliquot of the Cu2 and Ni2 solution is fed through an ion-exchange column that retains Ni2 . The Cu2 that passed through the...
A 1.000-mL aliquot of a solution containing Cu2 and Ni2 is treated with 25.00 mL of...
A 1.000-mL aliquot of a solution containing Cu2 and Ni2 is treated with 25.00 mL of a 0.04127 M EDTA solution. The solution is then back titrated with 0.02003 M Zn2 solution at a pH of 5. A volume of 16.44 mL of the Zn2 solution was needed to reach the xylenol orange end point. A 2.000-mL aliquot of the Cu2 and Ni2 solution is fed through an ion-exchange column that retains Ni2 . The Cu2 that passed through the...
A 1.000-mL aliquot of a solution containing Cu2 and Ni2 is treated with 25.00 mL of...
A 1.000-mL aliquot of a solution containing Cu2 and Ni2 is treated with 25.00 mL of a 0.04728 M EDTA solution. The solution is then back titrated with 0.02103 M Zn2 solution at a pH of 5. A volume of 19.11 mL of the Zn2 solution was needed to reach the xylenol orange end point. A 2.000-mL aliquot of the Cu2 and Ni2 solution is fed through an ion-exchange column that retains Ni2 . The Cu2 that passed through the...
A 1.000-mL aliquot of a solution containing Cu2 and Ni2 is treated with 25.00 mL of...
A 1.000-mL aliquot of a solution containing Cu2 and Ni2 is treated with 25.00 mL of a 0.03146 M EDTA solution. The solution is then back titrated with 0.02115 M Zn2 solution at a pH of 5. A volume of 16.97 mL of the Zn2 solution was needed to reach the xylenol orange end point. A 2.000-mL aliquot of the Cu2 and Ni2 solution is fed through an ion-exchange column that retains Ni2 . The Cu2 that passed through the...
A 50.0-mL solution containing Ni2+ and Zn2+ was treated with 25.0 mL of 0.0452 M EDTA...
A 50.0-mL solution containing Ni2+ and Zn2+ was treated with 25.0 mL of 0.0452 M EDTA to bind all the metal. The excess unreacted EDTA required 12.4 mL of 0.0123 M Mg2+ for complete reaction. An excess of the reagent 2,3-dimercapto-1-propanol was then added to displace the EDTA from zinc. Another 29.2 mL of Mg2+ were required for reaction with the liberated EDTA. Calculate the molarity of Ni2+ and Zn2+ in the original solution.
A 25 ml aliquot of of a solution containing Cu2+ and Ni2+ was treated with ascorbic...
A 25 ml aliquot of of a solution containing Cu2+ and Ni2+ was treated with ascorbic acid at pH = 3 to reduce the Cu2+ ions. The pH was adjusted to 10.0 and 27.32 ml of of 0.0565 M M EDTA was required to reach a murexide end point. In a parallel titration, 40.45 ml of 0 .0565 M EDTA was required to reach a murexide end point in a 25 ml aliquot that was not treated with ascorbic acid.  ...
A cyanide solution with a volume of 22.00 mL was treated with 25.00 mL of Ni2...
A cyanide solution with a volume of 22.00 mL was treated with 25.00 mL of Ni2 (containing excess Ni^2+) to convert the cyanide into tetracyanonickelate(II) ion: 4 CN- (aq) + Ni^2+ (aq) -> Ni(CN)4 ^2-(aq) The remaining unreacted Ni^2+ was reacted with 9.00 mL of 0.01500 M EDTA^4- (a reagent that forms 1:1 complexes with Ni2+ ion but does not react with Ni(CN)4^2- ). EDTA4- (aq) + Ni2+(aq) -> Ni(EDTA)^2- If 40.25 mL of the same EDTA titrant is needed...
A 25.00 mL Limestone sample containing Ca2 and Mg2 required 15.52 mL of 0.0106 M EDTA...
A 25.00 mL Limestone sample containing Ca2 and Mg2 required 15.52 mL of 0.0106 M EDTA to reach the end point. A second 25.00 mL sample of unknown was then treated with KOH to precipitate out the Mg2 , and the remaining Ca2 only solutin was titrated with the EDTA. The Ca2 only solution requred 10.68 mL of EDTA to reach the end point. Determine the amount of Ca2 and Mg2 in the unknown sample.
A 50.0 mL sample containing Cd2 and Mn2 was treated with 40.4 mL of 0.0500 M...
A 50.0 mL sample containing Cd2 and Mn2 was treated with 40.4 mL of 0.0500 M EDTA. Titration of the excess unreacted EDTA required 19.2 mL of 0.0300 M Ca2 . The Cd2 was displaced from EDTA by the addition of an excess of CN–. Titration of the newly freed EDTA required 18.2 mL of 0.0300 M Ca2 . What were the molarities of Cd2 and Mn2 in the original solution?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT