Question

In an insulated container, a 5.0 g sample of water at 80.°C was added to an...

In an insulated container, a 5.0 g sample of water at 80.°C was added to an unknown mass of cooler water at 30.°C. The final temperature of the resulting mixture became 35°C. What mass of cooler water was present? (Assume the container itself adsorbed a negligible amount of heat.)

Homework Answers

Answer #1

thanks and hope you like the answer

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An insulated container is used to hold 43.6 g of water at 20.6 °C. A sample...
An insulated container is used to hold 43.6 g of water at 20.6 °C. A sample of copper weighing 11.0 g is placed in a dry test tube and heated for 30 minutes in a boiling water bath at 100.0°C. The heated test tube is carefully removed from the water bath with laboratory tongs and inclined so that the copper slides into the water in the insulated container. Given that the specific heat of solid copper is 0.385 J/(g·°C), calculate...
A sample of steam with a mass of 0.551 g and at a temperature of 100...
A sample of steam with a mass of 0.551 g and at a temperature of 100 ∘C condenses into an insulated container holding 4.20 g of water at 5.0 ∘C . Assuming that no heat is lost to the surroundings, what is the final temperature of the mixture? For water, ΔHvap=40.7kJ/mol (at 100 ∘C) . what is the temperate?
A sample of steam with a mass of 0.520 g and at a temperature of 100...
A sample of steam with a mass of 0.520 g and at a temperature of 100 ∘C condenses into an insulated container holding 4.45 g of water at 5.0 ∘C.( ΔH∘vap=40.7 kJ/mol, Cwater=4.18 J/g⋅∘C) Assuming that no heat is lost to the surroundings, what is the final temperature of the mixture?
A sample of steam with a mass of 0.532 g at a temperature of 100 ∘C...
A sample of steam with a mass of 0.532 g at a temperature of 100 ∘C condenses into an insulated container holding 4.25 g of water at 4.0 ∘C. (For water, ΔH∘vap=40.7 kJ/mol and Cwater=4.18 J/(g⋅∘C).) Assuming that no heat is lost to the surroundings, what is the final temperature of the mixture?
You have 1.60 kg of water at 27.0°C in an insulated container of negligible mass. You...
You have 1.60 kg of water at 27.0°C in an insulated container of negligible mass. You add 0.640 kg of ice that is initially at -22.6°C. Assume no heat is lost to the surroundings and the mixture eventually reaches thermal equilibrium. If all of the ice has melted, what is the final temperature (in °C, round to 2 decimal places) of the water in the container? Otherwise if some ice remains, what is the mass of ice (in kg, round...
You have 1.45 kg of water at 27.4°C in an insulated container of negligible mass. You...
You have 1.45 kg of water at 27.4°C in an insulated container of negligible mass. You add 0.680 kg of ice that is initially at -22.4°C. Assume no heat is lost to the surroundings and the mixture eventually reaches thermal equilibrium. If all of the ice has melted, what is the final temperature (in °C, round to 2 decimal places) of the water in the container? Otherwise if some ice remains, what is the mass of ice (in kg, round...
A 60.0 g aluminum block, initially at 55.00 °C, is submerged into an unknown mass of...
A 60.0 g aluminum block, initially at 55.00 °C, is submerged into an unknown mass of water at 293.15 K in an insulated container. The final temperature of the mixture upon reaching thermal equilibrium is 25.00 °C. What is the approximate mass of the water? The specific heat of water is 4.18 J/g . °C. The specific heat of aluminum is 0.897 J/g . °C.
An insulated container has 2.00kg of water at 25◦C to which an unknown amount of ice...
An insulated container has 2.00kg of water at 25◦C to which an unknown amount of ice at 0◦C is added. The system comes to an equilibrium temperature of 20◦C. The heat capacity for water is 4190 J and the heat of fusion for ice is kg·K kJ LF =334kg. (a) Determine the amount of ice that was added to the water. (b) What is the change in the entropy associated with the ice melting? (c) What is the change in...
A) Four ice cubes at exactly 0 ∘C with a total mass of 53.5 g are...
A) Four ice cubes at exactly 0 ∘C with a total mass of 53.5 g are combined with 140 g of water at 85 ∘Cin an insulated container. (ΔH∘fus=6.02 kJ/mol, cwater=4.18J/g⋅∘C) If no heat is lost to the surroundings, what is the final temperature of the mixture? B) A sample of steam with a mass of 0.510 g and at a temperature of 100 ∘C condenses into an insulated container holding 4.50 g of water at 2.0 ∘C.( ΔH∘vap=40.7 kJ/mol,...
183 g of water at 21°C is contained in a copper container of mass 347 g....
183 g of water at 21°C is contained in a copper container of mass 347 g. An additional 124 g of water at 100°C is added. What is the final equilibrium temperature (in degrees C) if we treat the system's water and container as isolated? Use the heat capacity values from the this table. Specific heat capacity for copper is 387.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT