Question

100. mL of water at 40.0 degrees C are added to a calorimeter containing 100. mL...

100. mL of water at 40.0 degrees C are added to a calorimeter containing 100. mL water at 20.0 degrees C. After mixing, the water temperature is 29.5 degrees C. Calculate Kc.

Homework Answers

Answer #1

Since density of water = 1g/mL,

mass of 100 mL of water, m = 100 mL x1g/mL = 100 g

specific heat capacity of water, s = 4.184 J/C.g

Here water at 40.0 DegC is hotter than water at 20.0xDegC.

Hence heat is released by water at 40 DegC and heat is absorbed by water at 20.0 DegC.

Heat released by water at 40 DecgC = mxsxdT = 100 g x4.184 J/C.g x (40.0 - 29.5) = 4393.2 J

Heat absorbed by water at 20 DecgC = mxsxdT = 100 g x4.184 J/C.g x (29.5 - 20) = 3974.8 J

Since the heat absorbed is less than the heat released, some of the heat is absorbed by the calorimeter.

How ever here there is no equilibrium is maintained between any phase and also there is no chemical reaction in equilibrium. Hence there would be no equilibrium constant Kc

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Calculate the specific heat of a metal from the following experimental data. 75.0 ml cold water...
Calculate the specific heat of a metal from the following experimental data. 75.0 ml cold water is taken in a calorimeter. The initial temp of the water in the calorimeter is 21.2 degrees C. To the calorimeter containing cold water 29.458 g metal at 98.9 degrees C is added. The final temperature of the contents of the calorimeter is measured to be 29.5 degreesC. (Given: density of water= 1.00 g/ml, specific heat of water= 4.184 J. G. -1 degrees C...
A coffee-cup calorimeter containing 100 mL of H2O is used. The initial temperature of the calorimeter...
A coffee-cup calorimeter containing 100 mL of H2O is used. The initial temperature of the calorimeter is 23.0 ∘C. If 9.00 g of CaCl2 is added to the calorimeter, what will be the final temperature (in ∘C ) of the solution in the calorimeter? The heat of solution ΔHsoln of CaCl2 is −82.8 kJ/mol.
In the following experiment, a coffee-cup calorimeter containing 100. mL of H2O is used. The initial...
In the following experiment, a coffee-cup calorimeter containing 100. mL of H2O is used. The initial temperature of the calorimeter is 23.0 ∘C. If 2.00 g of CaCl2 is added to the calorimeter, what will be the final temperature of the solution in the calorimeter? The heat of solution, ΔHsoln, of CaCl2 is −82.8 kJ/mol. The specific heat of water is CS=4.184 J/(g−K
In the following experiment, a coffee-cup calorimeter containing 100 mL of H2O is used. The initial...
In the following experiment, a coffee-cup calorimeter containing 100 mL of H2O is used. The initial temperature of the calorimeter is 23.0 ∘C. If 2.60 g of CaCl2 is added to the calorimeter, what will be the final temperature of the solution in the calorimeter? The heat of solution ΔHsoln of CaCl2 is −82.8 kJ/mol.
In the following experiment, a coffee-cup calorimeter containing 100 mL of H2O is used. The initial...
In the following experiment, a coffee-cup calorimeter containing 100 mL of H2O is used. The initial temperature of the calorimeter is 23.0 ∘C. If 8.10 g of CaCl2 is added to the calorimeter, what will be the final temperature of the solution in the calorimeter? The heat of solution ΔHsoln of CaCl2 is −82.8 kJ/mol.
In the following experiment, a coffee-cup calorimeter containing 100 mL of H2O is used. The initial...
In the following experiment, a coffee-cup calorimeter containing 100 mL of H2O is used. The initial temperature of the calorimeter is 23.0 ∘C. If 8.70 g of CaCl2 is added to the calorimeter, what will be the final temperature of the solution in the calorimeter? The heat of solution ΔHsoln of CaCl2 is −82.8 kJ/mol.
In the following experiment, a coffee-cup calorimeter containing 100 mL of H2O is used. The initial...
In the following experiment, a coffee-cup calorimeter containing 100 mL of H2O is used. The initial temperature of the calorimeter is 23.0 ∘C. If 9.70 g of CaCl2 is added to the calorimeter, what will be the final temperature of the solution in the calorimeter? The heat of solution ΔHsoln of CaCl2 is −82.8 kJ/mol.
In the following experiment, a coffee-cup calorimeter containing 100 mL of H2O is used. The initial...
In the following experiment, a coffee-cup calorimeter containing 100 mL of H2O is used. The initial temperature of the calorimeter is 23.0 ∘C. If 3.50 g of CaCl2 is added to the calorimeter, what will be the final temperature of the solution in the calorimeter? The heat of solution ΔHsoln of CaCl2 is −82.8 kJ/mol.
In the following experiment, a coffee-cup calorimeter containing 100 mL of H2O is used. The initial...
In the following experiment, a coffee-cup calorimeter containing 100 mL of H2O is used. The initial temperature of the calorimeter is 23.0 ∘C. If 5.20 g of CaCl2 is added to the calorimeter, what will be the final temperature of the solution in the calorimeter? The heat of solution ΔHsoln of CaCl2 is −82.8 kJ/mol. Express your answer with the appropriate units.
In the following experiment, a coffee-cup calorimeter containing 100 mL of H2O is used. The initial...
In the following experiment, a coffee-cup calorimeter containing 100 mL of H2O is used. The initial temperature of the calorimeter is 23.0 ∘C. If 10.0 g of CaCl2 is added to the calorimeter, what will be the final temperature of the solution in the calorimeter? The heat of solution ΔHsoln of CaCl2 is −82.8 kJ/mol. Express your answer with the appropriate units.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT