Question

Laparoscopic surgery involves inflating the abdomen with carbon dioxide gas to separate the internal organs and...

Laparoscopic surgery involves inflating the abdomen with carbon dioxide gas to separate the internal organs and the abdominal wall.

If the CO2 injected into the abdomen produces a pressure of 17 mmHg and a volume of 4.20 L at 30. ∘C, how many grams of CO2 were used?

Homework Answers

Answer #1

According to Ideal gas equation

PV = nRT

n = PV/RT

P = 17 mmHg = 0.0224 atm

V = 4.20 L

T = 30 + 273 = 303 K

R = 0.0821 L.atm/mol.K

n = 0.0224*4.20/(0.0821*303)

   = 0.00378 moles

mass of CO2 = moles*molarmass

                     = 0.00378*44

                     = 0.1663 g of CO2.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
How many grams of carbon dioxide gas are dissolved in a 1 L bottle of carbonated...
How many grams of carbon dioxide gas are dissolved in a 1 L bottle of carbonated water if the manufacturer uses a pressure of 2.4 atm in the bottling process at 25 °C? Given: kH of CO2 in water = 29.76 atm/(mol/L) at 25 °C. How many grams of the gas are then when the bottle is opened and pressure is reduced to 1.05 atm?
A 18.0-L tank of carbon dioxide gas (CO2) is at a pressure of 9.60 ✕ 105...
A 18.0-L tank of carbon dioxide gas (CO2) is at a pressure of 9.60 ✕ 105 Pa and temperature of 21.0°C. (a) Calculate the temperature of the gas in Kelvin. K (b) Use the ideal gas law to calculate the number of moles of gas in the tank. mol (c) Use the periodic table to compute the molecular weight of carbon dioxide, expressing it in grams per mole. g/mol (d) Obtain the number of grams of carbon dioxide in the...
A 22.0-L tank of carbon dioxide gas (CO2) is at a pressure of 9.90 ? 105...
A 22.0-L tank of carbon dioxide gas (CO2) is at a pressure of 9.90 ? 105 Pa and temperature of 18.0°C. (a) Calculate the temperature of the gas in Kelvin. _______ K (b) Use the ideal gas law to calculate the number of moles of gas in the tank. mol (c) Use the periodic table to compute the molecular weight of carbon dioxide, expressing it in grams per mole. ______ g/mol (d) Obtain the number of grams of carbon dioxide...
1/ The stopcock connecting a 3.15 L bulb containing carbon dioxide gas at a pressure of...
1/ The stopcock connecting a 3.15 L bulb containing carbon dioxide gas at a pressure of 9.69 atm, and a 4.15 L bulb containing xenon gas at a pressure of 2.59 atm, is opened and the gases are allowed to mix. Assuming that the temperature remains constant, the final pressure in the system is .... atm. 2/ A mixture of xenon and hydrogen gases, at a total pressure of 647 mm Hg, contains 10.3 grams ofxenon and 0.403 grams of...
A Carbon dioxide fire extinguisher initially contains 5.5lbm of CO2 gas. In “real life” the CO2...
A Carbon dioxide fire extinguisher initially contains 5.5lbm of CO2 gas. In “real life” the CO2 would not be all gas, but for this problem assume that it is. The CO2 gas has an initial pressure of 860psia and initial temperature of +72oF. Immediately after putting out a fire, it has a final pressure of 100psia and a final temperature of -30oF. Assume ideal gas law behavior. a) Show that the specific gas constant for CO2 gas is approximately R=1131ft∙lbf/(slug∙R)....
An equilibrium mixture contains 0.500 mol of each of the products (carbon dioxide and hydrogen gas)...
An equilibrium mixture contains 0.500 mol of each of the products (carbon dioxide and hydrogen gas) and 0.200 mol of each of the reactants (carbon monoxide and water vapor) in a 1.00-L container. CO(g) +H20 (g) --> <-- CO2 (g) + H2 (g) How many moles of carbon dioxide would have to be added at constant temperature and volume to increase the amount of carbon monoxide to 0.300 mol once equilibrium has been reestablished?
An equilibrium mixture contains 0.450 mol of each of the products (carbon dioxide and hydrogen gas)...
An equilibrium mixture contains 0.450 mol of each of the products (carbon dioxide and hydrogen gas) and 0.200 mol of each of the reactants (carbon monoxide and water vapor) in a 1.00-L container CO(g) + H2O(g) <===> CO2(g) + H2(g) How many moles of carbon dioxide would have to be added at constant temperature and volume to increase the amount of carbon monoxide to 0.300 mol once equilibrium has been reestablished?
An equilibrium mixture contains 0.650 mol of each of the products (carbon dioxide and hydrogen gas)...
An equilibrium mixture contains 0.650 mol of each of the products (carbon dioxide and hydrogen gas) and 0.200 mol of each of the reactants (carbon monoxide and water vapor) in a 1.00-L container. CO(g) + H2O(g) <-----> CO2(g) + H2(g) How many moles of carbon dioxide would have to be added at constant temperature and volume to increase the amount of carbon monoxide to 0.300 mol once equilibrium has been reestablished?
1/ 0.987 mol sample of xenon gas at a temperature of 19.0 °C is found to...
1/ 0.987 mol sample of xenon gas at a temperature of 19.0 °C is found to occupy a volume of 28.2 liters. The pressure of this gas sample is .... mm Hg. 2/ A sample of nitrogen gas collected at a pressure of 477 mm Hg and a temperature of 278 K has a mass of 20.0 grams. The volume of the sample is ...... L. 3/ A 4.97 gram sample of carbon dioxide gas has a volume of 856...
How many liters of carbon dioxide gas, measured at 20 degrees Celsius and 715 torr, are...
How many liters of carbon dioxide gas, measured at 20 degrees Celsius and 715 torr, are formed when 49 grams of chalk (CACO3, 100.9 g/mol) are reacted with 60 ml of 3.20 M sulfuric acid (H2SO4) according to the following molecular equation (R= .0821 Latm/molK). CACO3 (s) + H2SO4 (aq) -> CO2 + H2O (l) + CASO4 (s)