Question

Consider the conversion of reactant A to product B. If k1 is equal to 0.017 s-1,...

Consider the conversion of reactant A to product B. If k1 is equal to 0.017 s-1, and if k2 is equal to 0.002 s-1, then, if the initial concentration of A, is 0.84 M, how many seconds will it take to reach equilibrium? To make the problem more tractable, assume that we are only considering the first-order decrease in A until it reaches its equilibrium value. In other words, ignore the back reaction. Report your answer to the nearest second.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The following rate constants were determined for a Michaelis-type enzyme: k1 = 2.5 x 10^9 M-1...
The following rate constants were determined for a Michaelis-type enzyme: k1 = 2.5 x 10^9 M-1 s -1 , k-1 = 5.0 x 10^3 s -1 , and k2 = 5.0 x 10^4 s -1 . a. What are the values of Km, Ks, and kcat for this enzyme? Is this a rapid equilibrium enzyme or does it just follow steady state kinetics? Explain the basis for your answer. b. What substrate concentration is needed to achieve half maximal velocity?...
Consider the reaction: N2(g) + 3H2(g) → 2NH3(g). At a particular moment during the reaction hydrogen...
Consider the reaction: N2(g) + 3H2(g) → 2NH3(g). At a particular moment during the reaction hydrogen is being consumed at a rate of 0.074 M/s. At this moment: (a) What is the rate of reaction (in M/s)? {3 points} (b) A what rate (in M/s) is NH3 being produced? {3 points} (c) Are these average or instantaneous rates? {1 point} [3] A certain first-order reaction has a rate constant of 1.65 min-1 at 20°C. What is the value of the...
please answear each question 1)At equilibrium, ________. a)the rates of the forward and reverse reactions are...
please answear each question 1)At equilibrium, ________. a)the rates of the forward and reverse reactions are equal b)the value of the equilibrium constant is 1 c)all chemical reactions have ceased d)the rate constants of the forward and reverse reactions are equal e)the limiting reagent has been consumed 2)The equilibrium-constant expression depends on the ________ of the reaction. a) stoichiometry b) mechanism c) the quantities of reactants and products initially present d) temperature e) stoichiometry and mechanism 3)Given the following reaction...
Procedure Experiment 1: Standardize an NaOH Solution Using Benzoic Acid as Primary Standard Part 1: Prepare...
Procedure Experiment 1: Standardize an NaOH Solution Using Benzoic Acid as Primary Standard Part 1: Prepare the NaOH Solution Take a 250 mL volumetric flask from the Containers shelf and a balance from the Instruments shelf and place them on the workbench. Zero the mass of the volumetric flask on the balance. Take sodium hydroxide from the Materials shelf and add 1 g to the flask. Record the mass from the balance display. Place the volumetric flask on the workbench....
do all five questions Question 1 20 pts Ignoring the effects of air resistance, if a...
do all five questions Question 1 20 pts Ignoring the effects of air resistance, if a ball falls freely toward the ground, its total mechanical energy Group of answer choices increases remains the same not enough information decreases Flag this Question Question 2 20 pts A child jumps off a wall from an initial height of 16.4 m and lands on a trampoline. Before the child springs back up into the air the trampoline compresses 1.8 meters. The spring constant...
1) Describe an example of each of the following that may be found of your kitchen:...
1) Describe an example of each of the following that may be found of your kitchen: Explain how your choice falls into this category, and if there is a chemical name or symbol for it, provide that as well. Provide a photo of your example with your ID card in it. a) a compound b) a heterogeneous mixture c) an element (symbol) Moving to the Caves… Lechuguilla Caves specifically. Check out this picture of crystals of gypsum left behind in...