Question

Given the following concentrations typically found in a resting muscle cell, what is the free energy...

Given the following concentrations typically found in a resting muscle cell, what is the free energy change from hydrolysis of ATP to ADP at 25 °C?
     ATP = 4 mM
     ADP = 9 uM
     Pi = 4 mM

Homework Answers

Answer #1

Here, for the ATP hydrolysis reaction,

ATP ADP + Pi     Go = -30.5 kJ/mol

We have the reaction quotient,

Q = ( [ADP] x [Pi] )/[ATP]

= [( 9 x10-6) x (4 x 10-3 )] /(4 x10-3) = 9 x 10-6 M

Now, using the free enrgy relation,

G = Go + RT ln Q

We have,

G = -30500 + 8.314 x 298 x ln(9 x 10-6)

= -59285.14 J/mol

= -59.285 kJ/mol

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
To answer this question, please reference the Problem Solving Video: Free Energy, ATP, and Creatine in...
To answer this question, please reference the Problem Solving Video: Free Energy, ATP, and Creatine in Resting Muscles. Suppose a sprinter's muscle tissue contains creatine phosphate at a concentration of 120 mM after dietary supplementation. The sprinter's muscle tissue also contains 4 mM ATP, 0.013 mM ADP, and 13 mM creatine. Use the table of the standard free energies of hydrolysis of phosphorylated compounds and the given concentrations to calculate the free energy change, ΔG, of the creatine kinase reaction...
The standard free energy change for ATP hydrolysis is -30.5 kJ/mol. Therefore, the free energy change...
The standard free energy change for ATP hydrolysis is -30.5 kJ/mol. Therefore, the free energy change for this reaction in a cell in which the concentration of ATP, ADP, and Pi are 3.1 mM, 2.2 mM and 6.8 mM, respectively, and assuming a physiologically relevant temperature (37 °C), is: Answer -44.25 kJ/mol explain
The standard Gibbs free energy change for hydrolysis or pure ATP to pure ADP is -31KJ/mol....
The standard Gibbs free energy change for hydrolysis or pure ATP to pure ADP is -31KJ/mol. The reaction is written ATP = ADP +Pi. What is the Gibbs energy of reaction in an environment at 37 C in which the ATP, ADP, and Pi concentrations are all 1mmol/L or 1 µmol/L?
The ΔG’o for the hydrolysis of phosphoarginine to arginine and Pi is – 32 kJ/mol. What...
The ΔG’o for the hydrolysis of phosphoarginine to arginine and Pi is – 32 kJ/mol. What is the actual free-energy change (ΔG) for the reaction at 25oC and pH 7.0 in resting lobster muscle where the concentrations of phosphoarginine, arginine, and Pi are: 6.8 mM, 2.6 mM, and 5 mM respectively.
1. Calculate the free energy of transport (Gt) for the movement of sodium ions (Na+ )...
1. Calculate the free energy of transport (Gt) for the movement of sodium ions (Na+ ) from the extracellular space into the cell under the following conditions: [Na+ ]out = 140 mM; [Na+ ]in = 12.0 mM;  =−60.0 mV; T = 37.0C. Use R = 8.314 J/mol K; F = 96,500 J/V mol. 2. Calculate the free energy of transport (Gt) for the movement of potassium ions (K+ ) from the extracellular space into the cell under the following...
If the intracellular concentrations of a metabolite (M-OH) and its phosphorylated form (M-OPO32-) were 2.8 mM...
If the intracellular concentrations of a metabolite (M-OH) and its phosphorylated form (M-OPO32-) were 2.8 mM and 0.1 mM, respectively, and if the intracellular concentrations of ATP and ADP were 4 mM and 0.16 mM, respectively, what would be the numerical value of [\Delta] ΔG (in kcal per mol to the nearest hundredth) for the following reaction: M-OH + ATP <--> M-OPO32- + ADP + H+? Assume a temperature of 37 °C and a pH of 7.4. To solve this...
Subject: Cell Biology Why do some books state that the standard free energy for the hydrolysis...
Subject: Cell Biology Why do some books state that the standard free energy for the hydrolysis of the gamma-phosphate group (the one furthest from the ribose) of ATP is different from the standard free energy change for the hydrolysis of the beta phosphate group (the middle phosphate group)? (my textbook shows the same standard free energy change for the hydrolysis of these two groups and that the textbook uses kcal/mol as the unit for free energy (some textbooks use kJ/mol)).
If the intracellular concentrations of a metabolite (M-COO-) and its phosphorylated form (M-COOPO32-) were 3 mM...
If the intracellular concentrations of a metabolite (M-COO-) and its phosphorylated form (M-COOPO32-) were 3 mM and 0.12 mM, respectively, and if the intracellular concentrations of ATP and ADP were 3.9 mM and 0.14 mM, respectively, what would be the numerical value of \Delta Δ G (in kcal per mol to the nearest hundredth) for the following reaction: M-COO- + ATP <--> M-COOPO32- + ADP? Assume a temperature of 37 °C and a pH of 7.2. To solve this problem,...
It’s demanding to measure the standard free-energy change associated with the hydrolysis of ATP because the...
It’s demanding to measure the standard free-energy change associated with the hydrolysis of ATP because the minute amount of ATP remaining at equilibrium is difficult to measure accurately. The value of ΔG'º can be calculated indirectly, however, from the equilibrium constants of two other reactions (the first of which should look familiar) that have less favorable equilibrium constants: glucose-6-phosphate + H2O à glucose + Pi                    Keq'=270 ATP + glucose à ADP + glucose-6-phosphate   Keq'=890 Using this information, calculate ΔG'º for...
If it costs 10.5 kcal/mol to “run” a particular cation ATPase “pump”, then what is the...
If it costs 10.5 kcal/mol to “run” a particular cation ATPase “pump”, then what is the minimum concentration of ATP required to provide just enough energy to run this ATPase? In other words, what does the concentration of ATP need to be so that the free energy of ATP hydrolysis is -10.5 kcal/mol. Report your answer to the nearest tenth of a mM, and assume that [\Delta] ΔG°' is -7.3 kcal/mol, the concentration of Pi is 3.4 mM, the concentration...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT