Question

If a reaction is first order with a rate constant of 5.48*10^-2 sec^-1, how long is...

If a reaction is first order with a rate constant of 5.48*10^-2 sec^-1, how long is required for 3/4 of the initial concentration of reactant to be used up?

Homework Answers

Answer #1

Given that K for first order reaction = 5.48*10^-2 sec^-1

The integrated first order rate law :

ln[A] = -k∙t + ln[A]₀
(k rate constant, [A]₀ initial concentration)

To arrange the above expression to calculate the time; t:
t = ln( [A]₀/ [A] ) / k

When 3/4 of initial reactant has consumed 1/4 is still there, i.e.
[A] = (1/4)[A]₀

Now put all the values and calculate the time:

t = ln( [A]₀/ [A] ) / k

t = ln( [A]₀/ (1/4)[A]₀ ) / 5.48*10^-2 sec^-1

t= ln( 4 ) / 5.48×10⁻² s⁻¹

t= 1.386 / 5.48×10⁻² s⁻¹

t = 25.29 s

Hence 25.29 s is required for 3/4 of the initial concentration of reactant to be used up.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
For a first-order reaction, the half-life is constant. It depends only on the rate constant k...
For a first-order reaction, the half-life is constant. It depends only on the rate constant k and not on the reactant concentration. It is expressed as t1/2=0.693k For a second-order reaction, the half-life depends on the rate constant and the concentration of the reactant and so is expressed as t1/2=1k[A]0 Part A A certain first-order reaction (A→products) has a rate constant of 4.20×10−3 s−1 at 45 ∘C. How many minutes does it take for the concentration of the reactant, [A],...
For a first-order reaction, the half-life is constant. It depends only on the rate constant k...
For a first-order reaction, the half-life is constant. It depends only on the rate constant k and not on the reactant concentration. It is expressed as t1/2=0.693k For a second-order reaction, the half-life depends on the rate constant and the concentration of the reactant and so is expressed as t1/2=1k[A]0 Part A A certain first-order reaction (A→products ) has a rate constant of 5.10×10−3 s−1 at 45 ∘C . How many minutes does it take for the concentration of the...
Part A : A certain first-order reaction (A→products) has a rate constant of 9.30×10−3 s−1 at...
Part A : A certain first-order reaction (A→products) has a rate constant of 9.30×10−3 s−1 at 45 ∘C. How many minutes does it take for the concentration of the reactant, [A], to drop to 6.25% of the original concentration? Part B : A certain second-order reaction (B→products) has a rate constant of 1.10×10−3M−1⋅s−1 at 27 ∘C and an initial half-life of 278 s . What is the concentration of the reactant B after one half-life?
What is the half-life of a first-order reaction with a rate constant of 4.20×10−4  s−1? (the answer...
What is the half-life of a first-order reaction with a rate constant of 4.20×10−4  s−1? (the answer is 1650s) What is the rate constant of a first-order reaction that takes 458 seconds for the reactant concentration to drop to half of its initial value?
Part A A certain first-order reaction (A→products) has a rate constant of 7.20×10−3 s−1 at 45...
Part A A certain first-order reaction (A→products) has a rate constant of 7.20×10−3 s−1 at 45 ∘C. How many minutes does it take for the concentration of the reactant, [A], to drop to 6.25% of the original concentration? Express your answer with the appropriate units. Answer: 6.42 min Part B A certain second-order reaction (B→products) has a rate constant of 1.35×10−3M−1⋅s−1 at 27 ∘Cand an initial half-life of 236 s . What is the concentration of the reactant B after...
The integrated rate laws for zero-, first-, and second-order reaction may be arranged such that they...
The integrated rate laws for zero-, first-, and second-order reaction may be arranged such that they resemble the equation for a straight line,y=mx+b. 1.) The reactant concentration in a zero-order reaction was 6.00×10−2M after 165 s and 3.50×10−2Mafter 385 s . What is the rate constant for this reaction? 2.)What was the initial reactant concentration for the reaction described in Part A? 3.)The reactant concentration in a first-order reaction was 6.70×10−2 M after 40.0 s and 2.50×10−3Mafter 95.0 s ....
1.) The rate constant for a certain reaction is k = 3.40×10−3 s−1 . If the...
1.) The rate constant for a certain reaction is k = 3.40×10−3 s−1 . If the initial reactant concentration was 0.550 M, what will the concentration be after 20.0 minutes? 2.)A zero-order reaction has a constant rate of 1.10×10−4 M/s. If after 80.0 seconds the concentration has dropped to 9.00×10−2M, what was the initial concentration?
A zero order reaction has a rate constant of 0.28 M s-1. How long will it...
A zero order reaction has a rate constant of 0.28 M s-1. How long will it take for the reactant to reach 30% of its original concentration?
Part A: The rate constant for a certain reaction is k = 5.00×10−3 s−1 . If...
Part A: The rate constant for a certain reaction is k = 5.00×10−3 s−1 . If the initial reactant concentration was 0.250 M, what will the concentration be after 2.00 minutes? Part B: A zero-order reaction has a constant rate of 3.40×10−4 M/s. If after 80.0 seconds the concentration has dropped to 6.00×10−2 M, what was the initial concentration?
The reactant concentration in a zero-order reaction was 6.00×10−2 M after 160 s and 1.50×10−2 M...
The reactant concentration in a zero-order reaction was 6.00×10−2 M after 160 s and 1.50×10−2 M after 305 s . What is the rate constant for this reaction? (I got this answer 3.10*10^-4 M/s) What was the initial reactant concentration for the reaction described in Part A? The reactant concentration in a first-order reaction was 0.100 M after 40.0 s and 3.80×10−3M after 90.0 s . What is the rate constant for this reaction? (I got this answer 6.54*10^-2 1/s)...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT