Question

Calculate the wavelength of the photon emitted when an electron makes a transition from n=5 to...

Calculate the wavelength of the photon emitted when an electron makes a transition from n=5 to n=3. You can make use of the following constants: h=6.626×10−34 J⋅s c=2.998×108 m/s 1 m=109 nm

Homework Answers

Answer #1

Apply Rydberg Formula

E = R*(1/nf^2 – 1/ni ^2)

R = -2.178*10^-18 J

Nf = final stage/level

Ni = initial stage/level

E = Energy per unit (i.e. J/photon)

E = (-2.178*10^-18)*(1/5^2 – 1/3 ^2)

E = 1.5488*10^-19 J/photon

For the wavelength:

WL = h c / E

h = Planck Constant = 6.626*10^-34 J s

c = speed of particle (i.e. light) = 3*10^8 m/s

E = energy per particle J/photon

WL = ( 6.626*10^-34)(3*10^8)/(1.5488*10^-19 ) =0.00000128344 m

WL = 0.0000012834*10^9 = 1283.4 nm

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Calculate the wavelength of the photon emitted when an electron makes a transition from n=5 to...
Calculate the wavelength of the photon emitted when an electron makes a transition from n=5 to n=3. You can make use of the following constants: h=6.626×10−34 J⋅s c=2.998×108 m/s 1 m=109 nm
Calculate the wavelength (in nanometers) of a photon emitted by a hydrogen atom when its electron...
Calculate the wavelength (in nanometers) of a photon emitted by a hydrogen atom when its electron drops from the n = 4 to n = 2 state. Consider the following energy levels of a hypothetical atom: E4 −1.61 × 10−19 J E3 −7.51 × 10−19 J E2 −1.35 × 10−18 J E1 −1.45 × 10−18 J (a) What is the wavelength of the photon needed to excite an electron from E1 to E4? ____ ×10m (b) What is the energy...
An electron in a hydrogen atom makes a transition from the n = 68 to the...
An electron in a hydrogen atom makes a transition from the n = 68 to the n = 4 energy state. Determine the wavelength of the emitted photon (in nm).
Calculate the wavelength and frequency of light emitted when an electron changes from n=5 to n=2...
Calculate the wavelength and frequency of light emitted when an electron changes from n=5 to n=2 in the H atom. Wavelength = ???m Frequency = ??? s^-1
An electron in a hydrogen atom makes a transition from the n = 7 to the...
An electron in a hydrogen atom makes a transition from the n = 7 to the n = 2 energy state. Determine the wavelength of the emitted photon (in nm). Enter an integer.
An electron is confined in a harmonic oscillator potential well. What is the longest wavelength of...
An electron is confined in a harmonic oscillator potential well. What is the longest wavelength of light that the electron can absorb if the net force on the electron behaves as though it has a spring constant of 74 N/m? ( el = 9.11 × 10-31 kg, c = 3.00 × 108 m/s, 1 eV = 1.60 × 10-19 J,  = 1.055 × 10-34 J · s, h = 6.626 × 10-34 J · s) A. 220 nm B. 230 nm...
Calculate the wavelength of the photon emitted when the hydrogen atom undergoes a transition from n=8...
Calculate the wavelength of the photon emitted when the hydrogen atom undergoes a transition from n=8 to n=4. (R=1.096776x10^7m-1) Please explain hwo you got the answer
Calculate the wavelength of a photon emitted when the electron in a Li2+ ion relaxes from...
Calculate the wavelength of a photon emitted when the electron in a Li2+ ion relaxes from the n=8 energy level to the n=4 energy level. (Use Bohr's model of the atom.)
Calculate the energy of the emitted photon as well as the wavelength and frequency of electromagnetic...
Calculate the energy of the emitted photon as well as the wavelength and frequency of electromagnetic radiation emitted from the hydrogen atom when the electron undergoes the transition from n = 5 to n = 1. In what region of the spectrum does this line occur?
An electron in He+ undergoes a transition from n = 4 to n = 2 state....
An electron in He+ undergoes a transition from n = 4 to n = 2 state. Calculate the (a) energy in J, (b) frequency in Hz, (c) wavelength in nm and (d) wave number in cm-1 of the photon emitted.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT