Question

For the following reaction at equilibrium, which change would shift the position of equilibrium toward forming...

For the following reaction at equilibrium, which change would shift the position of equilibrium toward forming more products? (Select your answer(s) as there may be more than one.)2NOBr(g) 2NO(g) + Br2(g), ∆Hºrxn = +30 kJ/mol

A)Decrease the total pressure by increasing the volume.

B)Add NO.

C)Remove Br2.

D)Raise the temperature.

E)Add NOBr

Homework Answers

Answer #1

Kc for the reaction is =[NO]2 [Br2]/ [NOBr]2

When NO is added, numeratorr increases and to keep the equilibrium constant same, NoBr also increases and hence backward reaction is favored.

when Br2 is removed, numerator decreases Hence denominator also decreases. So more products are formed,

The given reaction is endothermic, increasing the temperature takes the reaction towards the endothermic direction. Hence more products are formed.

when NoBr is added, the reaction proceeds in a direction of products.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
How would each of the following changes affect this equilibrium? 2 S(s) + 3 O2(g) ⇌...
How would each of the following changes affect this equilibrium? 2 S(s) + 3 O2(g) ⇌ 2 SO3(g); ΔH = −791.4 kJ/mol (a) increasing the temperature Would it shift the reaction toward the reactants? Would it shift the reaction toward the products? Or, does temp not affect equilibrium? (b) increasing [O2] Does increasing O2 shifts the reaction toward the reactants, shift the reaction toward the products, or does the increasing O2 not affect equilibrium? (c) increasing the volume of the...
For the following reaction at equilibrium in a reaction vessel, which one of these changes would...
For the following reaction at equilibrium in a reaction vessel, which one of these changes would cause the I2 concentration to increase? 2NOI(g) ↔ 2NO(g) + I2(g), /\Hºrxn= 30 kJ/mol A. Lower the temperature. B. Remove some NO. C. Remove some NOI. D. Compress the gas mixture into a smaller volume.
The reaction below is at equilibrium at a temperature T. There are four possible changes listed....
The reaction below is at equilibrium at a temperature T. There are four possible changes listed. Select all the changes that will shift the equilibrium so as to produce more products                                     MgO(s) + SO3(g) + 95 kJ   <======> MgSO4(s) I – Increase the temperature                II – Increase the volume III – Add more MgO IV – Remove SO3
Consider the following reaction (assume an ideal gas mixture): 2NOBr(g) <--> 2NO(g) + Br2(g) A 1.0-liter...
Consider the following reaction (assume an ideal gas mixture): 2NOBr(g) <--> 2NO(g) + Br2(g) A 1.0-liter vessel was initially filled with pure NOBr, at a pressure of 0.685 atm, at 300 K. After equilibrium was established, the partial pressure of NOBr was 0.279 atm. What is Kp for the reaction? Report answer to 4 decimal points.
Consider the following reaction (assume an ideal gas mixture): 2NOBr(g) <--> 2NO(g) + Br2(g) A 1.0-liter...
Consider the following reaction (assume an ideal gas mixture): 2NOBr(g) <--> 2NO(g) + Br2(g) A 1.0-liter vessel was initially filled with pure NOBr, at a pressure of 0.893 atm, at 300 K. After equilibrium was established, the partial pressure of NOBr was 0.242 atm. What is Kp for the reaction? Report answer to 4 decimal points.
Determine how each of the following changes will affect the equilibrium reaction below (shift left, shift...
Determine how each of the following changes will affect the equilibrium reaction below (shift left, shift right, no change) H2O(g) + C(s) ↔ H2(g) + CO(g) ∆H° = 131 kJ a. increasing the temperature b. adding CO c. removing H2 c. removing H e. increasing the volume of the container f. adding more carbon to the reaction
for the reaction 47kcal+2SO3(g)-2SO2(g)+O(g) predict the effect on the position of equilibrium will it shift to...
for the reaction 47kcal+2SO3(g)-2SO2(g)+O(g) predict the effect on the position of equilibrium will it shift to the left or to the right or will there be no change for each of the following changes the temperature is increased the pressure is increased by decreasing the volume of the container
Indicate any changes that a -d will cause for the following reaction initially at equilibrium: C2H4(g)...
Indicate any changes that a -d will cause for the following reaction initially at equilibrium: C2H4(g) + Cl2(g) reverse arrows C2H4 Cl2(g) + heat All 4 questions have the same answers 1-the system shifts in the direction of the reactants 2- the system shifts in the direction of the products 3- the equilibrium position does not change Part A- raise the temperature of the reaction Part B- decrease the volume of the reaction container Part C- add a catalyst Part...
5) (10 pts) For the endothermic reaction below initially at equilibrium, predict the shift in the...
5) (10 pts) For the endothermic reaction below initially at equilibrium, predict the shift in the reaction for each of the following scenarios. C(s) + H2O (g) ⇌ CO (g) + H2 (g) Disturbance Shift (left/right) a. Increase the amount of Water b. Decrease the pressure by half c. Remove C from the reaction d. Add hydrogen to the mixture e. Increase the temperature
When the chemical reaction: Br2(g) + Cl2(g) ↔ 2 BrCl(g) is at equilibrium, which answer describes...
When the chemical reaction: Br2(g) + Cl2(g) ↔ 2 BrCl(g) is at equilibrium, which answer describes two ways that the reaction would shift to the right? Add Cl2 and add BrCl Add Br2 and add BrCl Remove Br2 and add Cl2 Add Br2 and remove BrCl Remove Br2 and add BrCl