Perform linear regression using the known solutions to find the concentrations of the unknown solutions
concentration (mg/L) | absorbance |
0.00 | 0.181 |
1.00 | 0.344 |
2.00 | 0.661 |
3.00 | 0.824 |
4.00 | 1.141 |
5.00 | 1.304 |
6.00 | 1.621 |
? | 0.561 |
? | 0.892 |
? | 1.526 |
Concentration = X mg/L
Absorbance = Y
Y = a + b X
a = (Σy Σx2 – Σx Σxy) / (n Σx2 – (Σx)2)
b = (n Σxy – Σx Σy) / (n Σx2 – (Σx)2)
n = 7
S No. |
x |
y |
xy |
x2 |
1 |
0 |
0.181 |
0 |
0 |
2 |
1 |
0.344 |
0.344 |
1 |
3 |
2 |
0.661 |
1.322 |
4 |
4 |
3 |
0.824 |
2.472 |
9 |
5 |
4 |
1.141 |
4.564 |
16 |
6 |
5 |
1.304 |
6.52 |
25 |
7 |
6 |
1.621 |
9.726 |
36 |
∑ |
21 |
6.076 |
24.948 |
91 |
a = 0.148
b = 0.24
A = 0.148 + 0.24 * Concentration
(i)
A = 0.561
Concentration of unknown = (0.561 – 0.148)/ 0.24
= 1.72 mg/L
(ii)
A = 0.892
Concentration of unknown = (0.892 – 0.148)/ 0.24
= 3.1 mg/L
(iii)
A = 1.526
Concentration of unknown = (1.526 – 0.148)/ 0.24
= 5.74 mg/L
Get Answers For Free
Most questions answered within 1 hours.