Question

The equation for the formation of hydrogen iodide from H2 and I2 is: H2(g) + I2(g)...

The equation for the formation of hydrogen iodide from H2 and I2 is:

H2(g) + I2(g) <--> 2HI(g)

The value of Kp for the reaction is 69.0 at 730.0C. What is the equilibrium partial pressure of HI in a sealed reaction vessel at 730.0C if the initial partial pressures of H2 and I2 are both 0.1600 atm and initially there is no HI present?

Homework Answers

Answer #1

write out the Kp expression, where Pp is the partial pressure:

Kp = (Pp HI^2)/(Pp H2 * Pp I2)

Pp H2 = Pp I2 =0.016 atm

Let the partial pressure of HI at equilibrium is x

So

69.0 = (x)^2/(0.16 * 0.16)

=> x2 = 69 / 0.16*0.16

=> x = 1.329 atm

. To check, plug the equilibrium pressure back into the Kp expression, making sure that you get close to the Kp value you were given. If you do, you know it's correct.

Kp = 68.993 by putting the va;ue back in the equation

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Hydrogen iodide decomposes according to the equation 2HI (g)<---> H2 (g) + I2 (g) for which...
Hydrogen iodide decomposes according to the equation 2HI (g)<---> H2 (g) + I2 (g) for which K= .0156 at 400 degrees celsius. If 0.550 mol of HI was injected into 2.00L reaction vessel at 400 degrees celsuis. Calculate the concentration of H2 at equilibrium?
Kc for the reaction of hydrogen and iodine to produce hydrogen iodide. H2(g) + I2(g) ⇌...
Kc for the reaction of hydrogen and iodine to produce hydrogen iodide. H2(g) + I2(g) ⇌ 2HI(g) is 54.3 at 430°C. Calculate the equilibrium concentrations of H2, I2, and HI at 430°C if the initial concentrations are [H2] = [I2] = 0 M, and [HI] = 0.483 M.
Kc for the reaction of hydrogen and iodine to produce hydrogen iodide. H2(g) + I2(g) ⇌...
Kc for the reaction of hydrogen and iodine to produce hydrogen iodide. H2(g) + I2(g) ⇌ 2HI(g) is 54.3 at 430 ° C. Calculate the equilibrium concentrations of H2, I2, and HI at 430 ° C if the initial concentrations are [H2] = [I2] = 0 M, and [HI] = 0.445 M.
Hydrogen iodide, HI, decomposes at moderate temperature according to the equation 2HI (g) H2 (g) +...
Hydrogen iodide, HI, decomposes at moderate temperature according to the equation 2HI (g) H2 (g) + I2 (g) When 4.00 mol HI was placed in a 5.00-L vessel at 458C, the equilibrium mixture was found to contain 0.442 mol I2. What is the value of Kc for the decomposition of HI at this temperature?
Hydrogen iodide undergoes decomposition according to the equation 2HI(g) H2(g) + I2(g) The equilibrium constant Kp...
Hydrogen iodide undergoes decomposition according to the equation 2HI(g) H2(g) + I2(g) The equilibrium constant Kp at 500 K for this equilibrium is 0.060. Suppose 0.898 mol of HI is placed in a 1.00-L container at 500 K. What is the equilibrium concentration of H2(g)? (R = 0.0821 L · atm/(K · mol)) A. 7.3 M B. 0.40 M C. 0.15 M D. 0.18 M E. 0.043 M
Hydrogen iodide decomposes according to the following reaction. 2 HI(g) equilibrium reaction arrow H2(g) + I2(g)...
Hydrogen iodide decomposes according to the following reaction. 2 HI(g) equilibrium reaction arrow H2(g) + I2(g) A sealed 1.5 L container initially holds 0.00615 mol H2, 0.00445 mol I2, and 0.0163 mol HI at 703 K. When equilibrium is reached, the equilibrium concentration of H2(g) is 0.00364 M. What are the equilibrium concentrations of HI(g) and I2(g)?
An equilibrium mixture for the following reaction: H2(g) + I2(g) <---> 2HI(g) is composed of the...
An equilibrium mixture for the following reaction: H2(g) + I2(g) <---> 2HI(g) is composed of the following: P(I2) = 0.08592 atm; P(H2) = 0.08592 atm; P(HI) = 0.5996 atm. If this equilibrium is disturbed by adding more HI so that the partial pressure of HI is suddenly increased to 1.0000 atm, what will the partial pressures of each of the gases be when the system returns to equilibrium?   
CO(g)+Cl2(g)⇌COCl2(g) Carbon monoxide and chlorine gas are allowed to react in a sealed vessel at 464...
CO(g)+Cl2(g)⇌COCl2(g) Carbon monoxide and chlorine gas are allowed to react in a sealed vessel at 464 ∘C . At equilibrium, the concentrations were measured and the following results obtained: Gas Partial Pressure (atm) CO 0.780 Cl2 1.22 COCl2 0.120 What is the equilibrium constant, Kp, of this reaction? Part B The following reaction was performed in a sealed vessel at 767 ∘C : H2(g)+I2(g)⇌2HI(g) Initially, only H2 and I2 were present at concentrations of [H2]=3.75M and [I2]=2.05M. The equilibrium concentration...
H2 + I2 <---> 2HI Kp=100 Initially, a flask contains hydrogen gas at 0.010atm iodine gas...
H2 + I2 <---> 2HI Kp=100 Initially, a flask contains hydrogen gas at 0.010atm iodine gas at 0.0050atm, and hydorgen iodide gas at 0.50atm. Determine equilibrium partial pressure of each gas in the flask.
The system H2(g) + I2(g) ⇌ 2HI(g ) is at equilibrium at a fixed temperature with...
The system H2(g) + I2(g) ⇌ 2HI(g ) is at equilibrium at a fixed temperature with a partial pressure of H2 of 0.200 atm, a partial pressure of I2 of 0.200 atm, and a partial pressure of HI of 0.100 atm. An additional 0.26 atm pressure of HI is admitted to the container, and it is allowed to come to equilibrium again. What is the new partial pressure of HI? A.0.360 atm B. 0.464 atm C. 0.152 atm D. 0.104...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT