Question

What observed rotation is expected when a 1.08M solution of (R)-2-butanol is mixed with an equal...

What observed rotation is expected when a 1.08M solution of (R)-2-butanol is mixed with an equal volume of a .540M solution of racemic 2-butanol, and the resulting solution is analyzed in a sample container that is 1dm long? The specific rotation of (R)-2 butanol is -13.9 degrees mL/g dm.

Homework Answers

Answer #1

[Specific rotation] = (observed rotation)/(concentration(g/mL) x length (in dm) of tube

So...
1.08 M + 1/2(0.54M) = 1.35M of R (because racemic is equal mixtures of both)

since concentration must be in g/mL we need to convert it.
MW of 2-butanol = 74.122g/mol
(1.35mol/L)(74.122g/mol)(1L/1000mL) = 0.10 g/mL

-13.9 degree mL / (g x dm)= (observed rotation) / (0.10 g/mL)(1dm)
(-13.9 degree mL / g x dm) x (0.10 g/mL)(1dm) = observed rotation
observed rotation = -1.39 degree

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
What observed rotation is expected when a 1.02 M solution of (R)-2-butanol is mixed with an...
What observed rotation is expected when a 1.02 M solution of (R)-2-butanol is mixed with an equal volume of a 0.510 M solution of racemic 2-butanol, and the resulting solution is analyzed in a sample container that is 1 dm long? The specific rotation of (R)-2-butanol is –13.9 degrees mL g–1 dm–1.
What observed rotation is expected when a 1.68 M solution of (R)-2-butanol is mixed with an...
What observed rotation is expected when a 1.68 M solution of (R)-2-butanol is mixed with an equal volume of a 0.840 M solution of racemic 2-butanol, and the resulting solution is analyzed in a sample container that is 1 dm long? The specific rotation of (R)-2-butanol is –13.9 degrees mL g–1 dm–1.
What observed rotation is expected when a 1.36 M solution of (R)-2-butanol is mixed with an...
What observed rotation is expected when a 1.36 M solution of (R)-2-butanol is mixed with an equal volume of a 0.680 M solution of racemic 2-butanol, and the resulting solution is analyzed in a sample container that is 1 dm long? The specific rotation of (R)-2-butanol is –13.9 degrees mL g–1 dm–1.
The specific rotation, [α]D, for (-)-2-butanol is +14. What is the observed rotation for a solution...
The specific rotation, [α]D, for (-)-2-butanol is +14. What is the observed rotation for a solution of 3.3 g of (-)-2-butanol in 10 mL of water in a sample tube having a pathlength of 10 cm? degrees . The observed rotation of a solution of 1.7 g of a compound in 10 mL of water is +5.8 degrees. If the pathlength is 10 cm, what is the specific rotation of the compound? degrees
1a.) The specific rotation, [α]D, for (-)-pseudoephedrine is -52. What is the observed rotation for a...
1a.) The specific rotation, [α]D, for (-)-pseudoephedrine is -52. What is the observed rotation for a solution of 0.70 g of (-)-pseudoephedrine in 10 mL of water in a sample tube having a pathlength of 10 cm? The observed rotation of a solution of 0.75 g of a compound in 10 mL of water is -4.6 degrees. If the pathlength is 10 cm, what is the specific rotation of the compound? 1b.) The specific rotation, [α]D, for (-)-2-butanol is +14....
1) The specific rotation, [α]D, for sucrose is +67. What is the observed rotation for a...
1) The specific rotation, [α]D, for sucrose is +67. What is the observed rotation for a solution of 0.50 g of sucrose in 10 mL of water in a sample tube having a pathlength of 10 cm? Answer in degrees. 2) The observed rotation of a solution of 1.3 g of a compound in 10 mL of water is +11 degrees. If the pathlength is 10 cm, what is the specific rotation of the compound?
1.) The specific rotation, [?]D, for sucrose is +67. What is the observed rotation for a...
1.) The specific rotation, [?]D, for sucrose is +67. What is the observed rotation for a solution of 0.70 g of sucrose in 10 mL of water in a sample tube having a pathlength of 10 cm? ___degrees . 2.) The observed rotation of a solution of 1.7 g of a compound in 10 mL of water is +13 degrees. If the pathlength is 10 cm, what is the specific rotation of the compound?
a)predict the observed rotation of a solution of (S) 2butanol (2g) in 10ml water using a...
a)predict the observed rotation of a solution of (S) 2butanol (2g) in 10ml water using a 1dm polarimeter tube and the D line of sodium at 25 °c given that (R)2butanol has [alpa]D 25 =-13.52 b) predict the observed rotation of a solution of (R) 2butanol (4g) and (S) 2 butanol (2g) in 10ml water using a 1dm polarimeter tube and D line of sodium at 25°C .what would be the specific rotation of the mixture if a further 2g...
An aqueous solution containing 10 g of an optically pure compound was diluted to 500 mL...
An aqueous solution containing 10 g of an optically pure compound was diluted to 500 mL with water and was found to have a specific rotation of −157 ° . If this solution were mixed with 500 mL of a solution containing 5 g of a racemic mixture of the compound, what would the specific rotation of the resulting mixture of the compound? What would be its optical purity?
An aqueous solution containing 10 g of an optically pure compound was diluted to 500 mL...
An aqueous solution containing 10 g of an optically pure compound was diluted to 500 mL with water and was found to have a specific rotation of −146°. If this solution were mixed with 500 mL of a solution containing 3 g of a racemic mixture of the compound, what would the specific rotation of the resulting mixture of the compound? What would be its optical purity?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT