Question

15 OC, where the pure vapor pressures are 12.5 mmHg for water and 32.1 mmHg for...

15 OC, where the pure vapor pressures are 12.5 mmHg for water and 32.1 mmHg for ethanol. According to Raoult’s Law, the pressure of a component in a solution is equal to its pure vapor pressure times its mole fraction, that is PA = () (XA). Use Raoult’s law to determine the vapor pressure of each component in the solution. Then, add them to find the total vapor pressure. Show all equations and conversion factors

Homework Answers

Answer #1

POwater = 12.5 mmHg

POethanol = 32.1 mmHg

Pwater = Po x mole fraction

               = 12.5 x mole fraction of water

Pethanol = Po x mole fraction of ethanol

               = 32.1x mole fraction of ethanol

total pressure = Pwater + Pethanol

Total pressure = 12.5 x mole fraction of water + 32.1 x mole fraction of water

note: you did not give molefractions of water and ethanol . i need at least masses or percent i can complete this problem

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The vapor pressure of pure component A is 42.0 kPa at 298 K. The vapor pressure...
The vapor pressure of pure component A is 42.0 kPa at 298 K. The vapor pressure of pure component B is 29.0 kPa at the same temperature. Which of the two substances has the lower normal boiling point. Assuming an ideal liquid solution of A and B has mole fraction A equal to 0.400, What are the partial pressures and the total pressure over the liquid assuming Raoult’s law applies. What is the composition of the vapor based on Dalton’s...
By measuring the equilibrium between liquid and vapor phases of an acetone (A) / methanol (M)...
By measuring the equilibrium between liquid and vapor phases of an acetone (A) / methanol (M) solution at 57.2oC at 1.00 atm, it was found that xA = 0.400 when yA = 0.516. Calculate the activities and activity coefficient of both components in this solution on the Raoult’s law basis. The vapor pressures of the pure components at this temperature are: pA* = 105 kPa and pM* = 73.5 kPa. (xA ia the mole fraction in the liquid and yA...
Compounds A and B have the following vapor pressures: 150 oF, PA= 600 mmHg, PB= 500...
Compounds A and B have the following vapor pressures: 150 oF, PA= 600 mmHg, PB= 500 mmHg 200 oF, PA= 1000 mmHg, PB= 950 mmHg Assume that these compounds form ideal solution,calculate the vapor mole fraction of A and the total pressure VLE when the liquid mole fraction of A is 0.50 and the temperature 175 oF.
The vapor pressures of pure acetone and methanol are 165 kPa and 73.5 kPa, respectively, at...
The vapor pressures of pure acetone and methanol are 165 kPa and 73.5 kPa, respectively, at 57.2oC. However, it was found that at equilibrium at 57.2oC and 1 atm that xA=0.400 and yA=0.516, which are the liquid and vapor phase mole fractions of acetone, respectively. Using Raoult’s Law, calculate the activities and activity coefficients of each component.
What is the total vapor pressure at 20°C of a liquid solution containing 0.29 mole fraction...
What is the total vapor pressure at 20°C of a liquid solution containing 0.29 mole fraction benzene, C6H6, and 0.71 mole fraction toluene, C6H5CH3? Assume that Raoult’s law holds for each component of the solution. The vapor pressure of pure benzene at 20°C is 75 mmHg; that of toluene at 20°C is 22 mmHg
The equilibrium vapour pressures of ethanol and chloroform at 45oC are 230.33 mbar and 578.0 mbar...
The equilibrium vapour pressures of ethanol and chloroform at 45oC are 230.33 mbar and 578.0 mbar respectively. The Henry’s law constants for ethanol at 45oC is 1030.3 mbar. A non‐ideal solution of the two liquids has a mole fraction of ethanol in the liquid phase of 0.115.  The equilibrium vapour pressure of chloroform above the solution is 533.7 mbar and the equilibrium vapor pressure of the ethanol is 73.95 bar. (a) Find the mole fraction of ethanol in the vapour phase...
As solute is dissolved in a solvent, the vapor pressure of the solution changes according to...
As solute is dissolved in a solvent, the vapor pressure of the solution changes according to Raoult's law Psoln=Psolv×Xsolv where Psoln is the vapor pressure of the solution, Psolv is the vapor pressure of the pure solvent, and Xsolv is the mole fraction of the solvent. If the solute dissociates into ions, the term Xsolv must be modified to take into consideration the total number of moles of particles in the solution, both ions and molecules. When a solution contains...
What is the vapor pressure in mmHg of a solution made by dissolving 12.5 g of...
What is the vapor pressure in mmHg of a solution made by dissolving 12.5 g of NaCl in 500.0 g of water at 70°C, assuming a van't Hoff factor of 1.9? The vapor pressure of pure water at 70°C is 233.7 mmHg. watch for sig figs
The vapor pressure of pure Freon 11 and pure Freon 12 at 25ᵒ C are 15...
The vapor pressure of pure Freon 11 and pure Freon 12 at 25ᵒ C are 15 lb/in2 and 84 lb/in2 respectively. In the preparation of pharmaceutical aerosols, these two propellants are mixed together and the mole ratio of Freon 11 in the mixture is 0.6. Compute the partial vapor pressures of each of Freon 11 and Freon 12 and total vapor pressure of the mixture, assuming that the mixture follows Raoult’s law?
At 27 degrees Celcius, the vapor pressure of pure water is 23.76 mmHg and that of...
At 27 degrees Celcius, the vapor pressure of pure water is 23.76 mmHg and that of an aqueous solution of urea 22.95 mmHg. Calculate the molality of urea in the solution.