Question

Calculate the freezing point of a sample of seawater having a salinity of 3.8 % ....

Calculate the freezing point of a sample of seawater having a salinity of 3.8 % . Use a van’t Hoff factor of 1.9 in your calculation. Assume the sample contains water as the solvent and NaCl as the solute. Express the temperature in degrees Celsius to one decimal place.

Homework Answers

Answer #1

suppose mass = 1 kg or 1000 grams

mass of NaCl = mass percentage * mass of solution / 100

= 3.8 * 1000 / 100

= 38 grams

moles of NaCl = mass / molar mass

= 38 / 58.5

= 0.65

molality = moles / mass of solvent ( in kg)

= 0.65 / 1

= 0.65 m

delta T = i*Kf*molality

Kf = 1.86 C/m

= 1.9*1.86 * 0.65

= 2.30

freezing point of pure water = 0 C

T(solution) = Pure water temperature - delta T

= 0 - 2.30

= -2.3 C

any query please comment

if satisfiesd please rate it thanks

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Calculate the freezing point and boiling point of each of the following solutions: the freezing point...
Calculate the freezing point and boiling point of each of the following solutions: the freezing point of the solution: 174 g of sucrose, C12H22O11, a nonelectrolyte, dissolved in 1.35 kg of water (Kf=1.86∘C) Express your answer using one decimal place.
Calculate the freezing point of a solution containing 30 grams of KCL and 3300.0 grams of...
Calculate the freezing point of a solution containing 30 grams of KCL and 3300.0 grams of water. The molal-freezing-point-depression constant (Kf) for water is 1.86 degrees Celsius/M
Calculate the freezing point and boiling point of each of the following solutions: the boiling point...
Calculate the freezing point and boiling point of each of the following solutions: the boiling point of the solution: 60.0 g of glucose, C6H12O6, added to 113 g of water (Kb=0.52∘C) Express your answer using one decimal place.
Calculate the freezing point and boiling point in each solution, assuming complete dissociation of the solute....
Calculate the freezing point and boiling point in each solution, assuming complete dissociation of the solute. Part A Calculate the freezing point of a solution containing 12.3 g FeCl3 in 180 g water. Tf = ∘C Request Answer Part B Calculate the boiling point of a solution above. Tb = ∘C Request Answer Part C Calculate the freezing point of a solution containing 4.2 % KCl by mass (in water). Express your answer using two significant figures. Tf = ∘C...
Calculate the freezing point and boiling point of aqueous 1.9 m CuCl3 given Kf for water...
Calculate the freezing point and boiling point of aqueous 1.9 m CuCl3 given Kf for water = 1.86 deg.C/m; Kb for water = 0.512 deg C/m. Assume theoretical value for i. Show work for credit.
Calculate the boiling point of a solution of NaCl that has a freezing point of -0.3720...
Calculate the boiling point of a solution of NaCl that has a freezing point of -0.3720 °C. Assume complete dissociation. Kf water = 1.86 °C/m Kb water = 0.512 °C/m A. 100.1 °C B. 99.1 °C C. 101.1 °C D. 98.9 °C E. 105 °C
show ALL WORK. 6) Place the following solutions in order of INCREASING normal boiling point. NOTE:...
show ALL WORK. 6) Place the following solutions in order of INCREASING normal boiling point. NOTE: substances that have LDF only have very low normal boiling points. Use the van’t Hoff factor in the limit of infinite dilution. There are 7 substances. NOTE: the order format MUST be: Q < R < S < T, etc.             0.050 m CaCl2,            0.15 m NaCl,               Cl2,                  0.10 m HCl,             0.050 m HCOOH,       0.10 m C12H22O11,                              CH3OH 7)...
a) Calculate the boiling point (in degrees C) of a solution made by dissolving 5.78 g...
a) Calculate the boiling point (in degrees C) of a solution made by dissolving 5.78 g of fructose (C6H12O6) in 12 g of water. The Kbp of the solvent is 0.512 K/m and the normal boiling point is 373 K. Enter your answer to 2 decimal places. b) When 13.7 g of an unknown, non-volatile, non-electrolyte, X was dissolved in 100. g of methanol, the vapor pressure of the solvent decreased from 122.7 torr to 115 torr at 298 K....
1) Use Henry's law to determine the molar solubility of helium at a pressure of 1.9...
1) Use Henry's law to determine the molar solubility of helium at a pressure of 1.9 atm and 25 ∘C. Henry’s law constant for helium gas in water at 25 ∘C is 3.70⋅10−4M/atm. 2) A 2.800×10−2M solution of NaCl in water is at 20.0∘C. The sample was created by dissolving a sample of NaCl in water and then bringing the volume up to 1.000 L. It was determined that the volume of water needed to do this was 999.2 mL...
I am doing a latenitelab on Molecular Mass by Freezing Poing Depression. I am stuck on...
I am doing a latenitelab on Molecular Mass by Freezing Poing Depression. I am stuck on three questions. 1.Suppose you added 4.000 g of FP sample #1 instead of 2.000 g, what would happen to the freezing point temperature of the water? 2. Suppose you dissolve 154.286 g of sodium chloride in 2.00 L of water. What is the molality of the solution given that the molar mass of sodium chloride is 58.44 g/mol and the density of water is...