Question

The concentration of K+ ions in the intracellular fluid of a nerve cell is approximately 361.669...

The concentration of K+ ions in the intracellular fluid of a nerve cell is approximately 361.669 mM, but in the extracellular fluid the K+ concentration is 20.15 mM. Given that the electric potential difference inside and outside the cell is given by φ (inside) - φ(outside) = –70.0 mV, calculate the Gibbs energy change (to the zeroth decimal place in Joules) for the transfer of 1.00 mol of K+ ion against the concentration gradient at 37.8oC.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
As a result of an experiment following measurements were obtained from a cell: intracellular Na+ concentration...
As a result of an experiment following measurements were obtained from a cell: intracellular Na+ concentration of 20 mM, intracellular K+ concentration of 100 mM, intracellular Cl- concentration of 60 mM, intracellular Ca2+ concentration of 0.0001 mM, extracellular Na+ concentration of 150 mM, extracellular K+ concentration of 5 mM, extracellular Cl- concentration of 120 mM, extracellular Ca2+ concentration of 2 mM. Using these values calculate equilibrium potential for K+ ion in these cells. (RT/F = 26.7 mV, 37oC; Use original...
Consider a cell at steady state. The intracellular Cl- concentration is 10 mM, while the extracellular...
Consider a cell at steady state. The intracellular Cl- concentration is 10 mM, while the extracellular Cl- concentration is 108 mM when the chloride channels are closed. The electrical potential inside the cell is -65 mV, and the external potential is 0 mV. Calculate the electrochemical potential difference across the membrane. Assume R = 8.3144 J/mol K and T = 37C. When the chloride channels open, in which direction will the Cl- ions move?
What is the equilibrium potential of chloride ions in a mammalian neuron when the ion concentration...
What is the equilibrium potential of chloride ions in a mammalian neuron when the ion concentration inside the cell is 10 mM and their concentration outside the cell is 140 mM? Give your answer in mV, rounded to the nearest hundredth.
1) The concentration of K+ outside of a cell is 300 mM, and the concentration inside...
1) The concentration of K+ outside of a cell is 300 mM, and the concentration inside the cell is physiologically normal. The Vm for this cell will be: -80 mV close to +29 mV more positive than -80 mV more negative than -80 mV b and c
Consider the transport of a potassium ion from the blood (where its concentration is about 4.5...
Consider the transport of a potassium ion from the blood (where its concentration is about 4.5 mM) into a Red Blood Cell that contains 140 mM K+ at a temperature of 298 K. The transmembrane potential is about 58 mV, inside negative relative to outside. What is the free-energy change for transport of potassium ions into a Red Blood Cell?
When heart muscle is treated with external lithium ions, the ions pass through the cell membrane...
When heart muscle is treated with external lithium ions, the ions pass through the cell membrane and equilibrate. Muscle cells treated with 150 mM lithium chloride solution achieved a steady-state membrane potential of 40 mV (negative inside). Part A What was the intracellular lithium concentration?
A cell’s membrane is permeable to K+, Na+, and Cl─.    Use the following information to determine...
A cell’s membrane is permeable to K+, Na+, and Cl─.    Use the following information to determine the equilibrium potential of this cell.    Assume that the cell is at 37º C. K+ Na+ Cl─ Permeability (m/s) 100 1 1000 Outside Concentration (mM) 4.5 145 116 Inside Concentration (mM) 150 12 4.2             [mM = 0.001 Moles / liter.] 70.0     mV -14.3 mV -60.5 mV -88.3 mV
1)Question 1 (20 pts) You are studying neurons in the lab by growing them in culture...
1)Question 1 (20 pts) You are studying neurons in the lab by growing them in culture (in a petri dish outside the body). You grow them in an incubator at 37 degrees C. With this experimental setup, you can easily change the extracellular ion concentrations by switching the cell culture medium (the fluid that surrounds the cells). Intracellular concentration Medium 1 (extracellular concentration) Medium 2 (extracellular concentration) K+ 140 mM 4.5 mM 50 mM Na+ 10 mM 135 mM 100...
The Na –glucose symport system of intestinal epithelial cells couples the \"downhill\" transport of two Na...
The Na –glucose symport system of intestinal epithelial cells couples the \"downhill\" transport of two Na ions into the cell to the \"uphill\" transport of glucose, pumping glucose into the cell against its concentration gradient. If the Na concentration outside the cell ([Na ]out) is 159 mM and that inside the cell ([Na ]in) is 23.0 mM, and the cell potential is -49.0 mV (inside negative), calculate the maximum ratio of [glucose]in to [glucose]out that could theoretically be produced if...
2. The portion of a nerve cell that conducts signals is called an axon. Many of...
2. The portion of a nerve cell that conducts signals is called an axon. Many of the electrical properties of axons are governed by ion channels, which are protein molecules that span the axon’s cell membrane. When open, each ion channel has a pore that is filled with fluid of low resistivity and connects the interior of the cell electrically to the medium outside the cell. In contrast, the lipid-rich cell membrane in which ion channels reside has very high...