Question

If a 74.6 g sample of ice is placed in water and the temperature of the...

If a 74.6 g sample of ice is placed in water and the temperature of the ice and surroundings is 0 degrees Celsius and the pressure is 1 bar, calculate

A) delta s surroundings
B) delta s system
C) delta s universe
D) what can you conclude about the process from the value obtained in c)?

Homework Answers

Answer #1

Moles of ice = 74.6/18 = 4.14 moles

Molar heat of fusion of water = 6.02 kJ/mole

Since 24.92 kJ of heat is absorbed by the system, it will be released from the surroundings.

Therefore,

From we can conclude that melting of ice is a reversible process.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A sample of 1.00 mol of silver at 150 degrees celsius is placed in contact with...
A sample of 1.00 mol of silver at 150 degrees celsius is placed in contact with 1.00 mol of silver at 0 degrees celsius. Calculate (a) the final temperature of both silver samples; (b) the delta S for the hot Ag sample; (c) the delta S for the cold Ag sample; and (d) the total delta S ofthe system. (e) Is the process spontaneous? How do you know? Assume a constant heat capacity for Ag of 25.75 J/mol-K.
cup of iced water has 50 g of ice cubes in 100 g of water all...
cup of iced water has 50 g of ice cubes in 100 g of water all at 0 degrees celsius in a room where the air temp if 27 degrees celsius. soemtime later all the ice cubes melt into water still at 0 degrees celsius. what is the change in entropy of A) the iced water? what is the change in entropy for the room and the change in entropy for the "universe"?
Two 20.0-g ice cubes at –20.0 °C are placed into 275 g of water at 25.0...
Two 20.0-g ice cubes at –20.0 °C are placed into 275 g of water at 25.0 °C. Assuming no energy is transferred to or from the surroundings, calculate the final temperature of the water after all the ice melts.
Two 20.0-g ice cubes at –16.0 °C are placed into 295 g of water at 25.0...
Two 20.0-g ice cubes at –16.0 °C are placed into 295 g of water at 25.0 °C. Assuming no energy is transferred to or from the surroundings, calculate the final temperature of the water after all the ice melts.
Two 20.0-g ice cubes at –15.0 °C are placed into 225 g of water at 25.0...
Two 20.0-g ice cubes at –15.0 °C are placed into 225 g of water at 25.0 °C. Assuming no energy is transferred to or from the surroundings, calculate the final temperature of the water after all the ice melts.
Two 20.0-g ice cubes at –15.0 °C are placed into 285 g of water at 25.0...
Two 20.0-g ice cubes at –15.0 °C are placed into 285 g of water at 25.0 °C. Assuming no energy is transferred to or from the surroundings, calculate the final temperature of the water after all the ice melts.
Two 20.0-g ice cubes at –20.0 °C are placed into 255 g of water at 25.0...
Two 20.0-g ice cubes at –20.0 °C are placed into 255 g of water at 25.0 °C. Assuming no energy is transferred to or from the surroundings, calculate the final temperature of the water after all the ice melts.
Two 20.0-g ice cubes at –19.0 °C are placed into 275 g of water at 25.0...
Two 20.0-g ice cubes at –19.0 °C are placed into 275 g of water at 25.0 °C. Assuming no energy is transferred to or from the surroundings, calculate the final temperature of the water after all the ice melts.
Two 20.0-g ice cubes at –16.0 °C are placed into 295 g of water at 25.0...
Two 20.0-g ice cubes at –16.0 °C are placed into 295 g of water at 25.0 °C. Assuming no energy is transferred to or from the surroundings, calculate the final temperature of the water after all the ice melts.
Two 20.0-g ice cubes at –11.0 °C are placed into 255 g of water at 25.0...
Two 20.0-g ice cubes at –11.0 °C are placed into 255 g of water at 25.0 °C. Assuming no energy is transferred to or from the surroundings, calculate the final temperature of the water after all the ice melts.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT