Question

The first-order rate constant for the decomposition of N2O5, 2N2O5(g)→4NO2(g)+O2(g) at 70∘C is 6.82×10−3 s−1. Suppose...

The first-order rate constant for the decomposition of N2O5,

2N2O5(g)→4NO2(g)+O2(g)

at 70∘C is 6.82×10−3 s−1. Suppose we start with 2.30×10−2 mol of N2O5(g) in a volume of 1.8 L .

a) How many moles of N2O5 will remain after 6.0 min ?

b) How many minutes will it take for the quantity of N2O5 to drop to 1.6×10−2 mol ?

c) What is the half-life of N2O5 at 70∘C?

Homework Answers

Answer #1

a)

we have:

[N2O5]o = 0.023 mol

t = 6.0 min

k = 6.82*10^-3 min-1

use integrated rate law for 1st order reaction

ln[N2O5] = ln[N2O5]o - k*t

ln[N2O5] = ln(2.3*10^-2) - 6.82*10^-3*6

ln[N2O5] = -3.772 - 6.82*10^-3*6

ln[N2O5] = -3.813

[N2O5] = e^(-3.813)

[N2O5] = 2.21*10^-2 mol

Answer: 2.21*10^-2 mol

b)

we have:

[N2O5]o = 2.3*10^-2 mol

[N2O5] = 1.6*10^-2 mol

k = 6.82*10^-3 min-1

use integrated rate law for 1st order reaction

ln[N2O5] = ln[N2O5]o - k*t

ln(1.6*10^-2) = ln(2.3*10^-2) - 6.82*10^-3*t

-4.135 = -3.772 - 6.82*10^-3*t

6.82*10^-3*t = 0.3629

t = 53.2 min

Answer: 53.2 min

c)

Given:

k = 6.82*10^-3 min-1

use relation between rate constant and half life of 1st order reaction

t1/2 = (ln 2) / k

= 0.693/(k)

= 0.693/(6.82*10^-3)

= 1.016*10^2 min

Answer: 102 min

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The first-order rate constant for the decomposition of N2O5, 2N2O5(g)→4NO2(g)+O2(g) at 70∘C is 6.82×10^−3 s−1. Suppose...
The first-order rate constant for the decomposition of N2O5, 2N2O5(g)→4NO2(g)+O2(g) at 70∘C is 6.82×10^−3 s−1. Suppose we start with 2.60×10^−2 mol of N2O5(g) in a volume of 2.4 L . How many moles of N2O5 will remain after 4.0 min ? How many minutes will it take for the quantity of N2O5 to drop to 1.9×10^−2 mol ? What is the half-life of N2O5 at 70∘C?
The first-order rate constant for the decomposition of N2O5, 2N2O5(g)→4NO2(g)+O2(g) at 70∘C is 6.82×10−3 s−1. Suppose...
The first-order rate constant for the decomposition of N2O5, 2N2O5(g)→4NO2(g)+O2(g) at 70∘C is 6.82×10−3 s−1. Suppose we start with 2.10×10−2 mol of N2O5(g) in a volume of 1.8 L . How many minutes will it take for the quantity of N2O5 to drop to 1.6×10−2 mol ?
The first-order rate constant for the decomposition of N2O5, 2N2O5(g)?4NO2(g)+O2(g), at 70?C is 6.82×10?3s?1. Suppose we...
The first-order rate constant for the decomposition of N2O5, 2N2O5(g)?4NO2(g)+O2(g), at 70?C is 6.82×10?3s?1. Suppose we start with 2.90×10?2 mol of N2O5(g) in a volume of 1.5 L . a) How many moles of N2O5 will remain after 5.0 min ? b) How many minutes will it take for the quantity of N2O5 to drop to 2.0×10?2 mol? c) What is the half-life of N2O5 at 70?C?
The first-order rate constant for the decomposition of N2O5, given below, at 70°C is 6.82 10-3...
The first-order rate constant for the decomposition of N2O5, given below, at 70°C is 6.82 10-3 s-1. Suppose we start with 0.0550 mol of N2O5(g) in a volume of 3.5 L. 2 N2O5(g) → 4 NO2(g) + O2(g) (a) How many moles of N2O5 will remain after 3.0 min? mol (b) How many minutes will it take for the quantity of N2O5 to drop to 0.005 mol? min (c) What is the half-life of N2O5 at 70°C? min
The first-order rate constant for the decomposition of N2O5, given below, at 70°C is 6.82 10-3...
The first-order rate constant for the decomposition of N2O5, given below, at 70°C is 6.82 10-3 s-1. Suppose we start with 0.0550 mol of N2O5(g) in a volume of 2.5 L. 2 N2O5(g) → 4 NO2(g) + O2(g) (a) How many moles of N2O5 will remain after 2.5 min? mol (b) How many minutes will it take for the quantity of N2O5 to drop to 0.005 mol? min (c) What is the half-life of N2O5 at 70°C? min
The first order constant is 4.82 x 10-3 s-1 at 70C for the decomposition of the...
The first order constant is 4.82 x 10-3 s-1 at 70C for the decomposition of the following reaction: 2N2O5 (g) -> 4NO2 + O2 (g) Suppose that you start with .0175M of N2O5 (g) a.) What is the molarity of N2O5 that remains after 15 minutes (note: the rate constant is in seconds) b.) How many seconds will it take for the quantity of N2O5 to drop to .015M? c.) What is the half life of N2O5 at 70C?
13) For the reaction: 2N2O5(g) ?4NO2(g) +O2(g) the rate law is: ?[O2] ?t = k[N2O5] At...
13) For the reaction: 2N2O5(g) ?4NO2(g) +O2(g) the rate law is: ?[O2] ?t = k[N2O5] At 300 K, the half-life is 2.50
For the reaction 2N2O5(g) → 4NO2(g) + O2(g), the following data were collected: t (minutes) [N2O5]...
For the reaction 2N2O5(g) → 4NO2(g) + O2(g), the following data were collected: t (minutes) [N2O5] (mol/L) 0 1.24 × 10–2 10. 0.92 × 10–2 20. 0.68 × 10–2 30. 0.50 × 10–2 40. 0.37 × 10–2 50. 0.28 × 10–2 70. 0.15 × 10–2 Reference: Ref 12-10 The half-life of this reaction is approximately
the decomposition of N2O5 can be described by equation 2N2O5 (soln) = 4NO2 (soln) + O2...
the decomposition of N2O5 can be described by equation 2N2O5 (soln) = 4NO2 (soln) + O2 (g) t (s)    [N2O5](M) 0 ----- 2.62 215----2.29 506----1.91 795----1.59 given data for reaction at 45°C . A). interval 0-215s reaction rate ? M/s B). interval 215-506s reaction rate? M/s C). interval 506-795s reaction rate? M/s
"For the reaction 2 N2O5 --> 4 NO2 + O2 the rate constant is 6.82 x...
"For the reaction 2 N2O5 --> 4 NO2 + O2 the rate constant is 6.82 x 10^-3 s^-1 at 70 degrees Celsius. The reaction is first order overall. If you start with 0.350 mol of dinitrogen pentoxide in a 2.0 L volume, how many miles will remain after 10 minutes? How long will it take for you to have 0.125 moles of reactant left? What is the half-life of dinitrogen pentoxide?" *Please show all work. * if it's out of...