Question

A generic solid, X, has a molar mass of 67.9 g/mol. In a constant-pressure calorimeter, 16.8...

A generic solid, X, has a molar mass of 67.9 g/mol. In a constant-pressure calorimeter, 16.8 g of X is dissolved in 269 g of water at 23.00 °C.

X(s) ------ X(aq)

The temperature of the resulting solution rises to 26.40 °C. Assume the solution has the same specific heat as water, 4.184 J/(g·°C), and that there\'s negligible heat loss to the surroundings.

1. How much heat was absorbed by the solution?

2. What is the enthalpy of the reaction?

Homework Answers

Answer #1

1) Heat absorbed by the solution

Heat absorbed = m Cp (T2 - T1)

where,

m = Mass = 269 + 16.8 = 285.8 g

Cp = 4.184

T2 = 26.4

T1 = 23

=> Heat absorbed = 285.8 x 4.184 x (26.4 - 23) = 4065.7 J

2) Enthalpy

Moles of X = 16.8 / 67.9 = 0.2474 moles

Enthalpy of a reaction is defined as Heat evolved per mole of the reaction

For 0.2474 moles of X, heat evolved = 4065.7 J

=> For 1 mole of X, Heat evolved = 4065.7 / 0.2474 = 16432.2 J

=> Enthalpy of reaction = - 16432.2 J / mol or - 16.43 kJ / mol (-ve since heat is being evolved)

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A generic solid, X, has a molar mass of 67.9 g/mol. In a constant-pressure calorimeter, 16.8...
A generic solid, X, has a molar mass of 67.9 g/mol. In a constant-pressure calorimeter, 16.8 g of X is dissolved in 269 g of water at 23.00 °C. X(s) ------ X(aq) The temperature of the resulting solution rises to 26.40 °C. Assume the solution has the same specific heat as water, 4.184 J/(g·°C), and that there\'s negligible heat loss to the surroundings. 1. How much heat was absorbed by the solution? 2. What is the enthalpy of the reaction?
A generic solid, X, has a molar mass of 75.3 g/mol. In a constant-pressure calorimeter, 16.9g...
A generic solid, X, has a molar mass of 75.3 g/mol. In a constant-pressure calorimeter, 16.9g of X is dissolved in 267g of water at 23.00 degrees Celsius. X(s) --> X(aq) The temperature of the resulting solution rises to 24.50 degrees Celsius. Assume the solution has the same specific heat as water, 4.184J/(g.C) and that's negligible heat loss to the surroundings. How much heat was absorbed by the solution? What is the enthalpy of the reaction? Thanks!
When an excess of Zn is added to 125mL of 0.150M CuSO4(aq) in a constant-pressure calorimeter...
When an excess of Zn is added to 125mL of 0.150M CuSO4(aq) in a constant-pressure calorimeter of negligible heat capacity, the temperature of the solution rises from 21.20 C to 28.97 C. Assuming the density and specific heat of the solution are the same as for pure water (1.00 g/mL and 4.184 J/g C), determine the molar enthalpy change of the following reaction. Ignore the specific heats of the metals Zn(s) + CuSO4(aq) --> ZnSO4 (aq) + Cu(s)
A calorimeter contains 33.0 mL of water at 15.0 ∘C . When 2.10 g of X...
A calorimeter contains 33.0 mL of water at 15.0 ∘C . When 2.10 g of X (a substance with a molar mass of 46.0 g/mol ) is added, it dissolves via the reaction X(s)+H2O(l)→X(aq) and the temperature of the solution increases to 28.0 ∘C . Calculate the enthalpy change, ΔH, for this reaction per mole of X. Assume that the specific heat of the resulting solution is equal to that of water [4.18 J/(g⋅∘C)], that density of water is 1.00...
In a constant-pressure calorimeter of negligible heat capacity, 25 mL of 1.00 M CaCl2 is mixed...
In a constant-pressure calorimeter of negligible heat capacity, 25 mL of 1.00 M CaCl2 is mixed with 25 mL of 2.00 M KF, resulting in solid CaF2 precipitating out of the solution. During this process, the temperature of the water rises from 25.0°C to 26.7°C. Assume the specific heat capacity of the solution is 4.184 J/°C•g and the density of the solution is 1.00 g/mL. Calculate the enthalpy of precipitation in kJ per mole of CaF2 precipitated.
A calorimeter contains 30.0 mL of water at 11.5 ∘C . When 2.10 g of X...
A calorimeter contains 30.0 mL of water at 11.5 ∘C . When 2.10 g of X (a substance with a molar mass of 42.0 g/mol ) is added, it dissolves via the reaction X(s)+H2O(l)→X(aq) and the temperature of the solution increases to 30.0 ∘C . Calculate the enthalpy change, ΔH, for this reaction per mole of X. Assume that the specific heat of the resulting solution is equal to that of water [4.18 J/(g⋅∘C)], that density of water is 1.00...
A calorimeter contains 17.0 mL of water at 11.5 ∘C . When 1.60 g of X...
A calorimeter contains 17.0 mL of water at 11.5 ∘C . When 1.60 g of X (a substance with a molar mass of 79.0 g/mol ) is added, it dissolves via the reaction X(s)+H2O(l)→X(aq) and the temperature of the solution increases to 30.0 ∘C . Calculate the enthalpy change, ΔH, for this reaction per mole of X. Assume that the specific heat of the resulting solution is equal to that of water [4.18 J/(g⋅∘C)], that density of water is 1.00...
A calorimeter contains 35.0 mL of water at 15.0 ∘C . When 1.70 g of X...
A calorimeter contains 35.0 mL of water at 15.0 ∘C . When 1.70 g of X (a substance with a molar mass of 76.0 g/mol ) is added, it dissolves via the reaction X(s)+H2O(l)→X(aq) and the temperature of the solution increases to 25.0 ∘C . Calculate the enthalpy change, ΔH, for this reaction per mole of X. Assume that the specific heat of the resulting solution is equal to that of water [4.18 J/(g⋅∘C)], that density of water is 1.00...
A calorimeter contains 35.0 mL of water at 11.5 ∘C . When 1.30 g of X...
A calorimeter contains 35.0 mL of water at 11.5 ∘C . When 1.30 g of X (a substance with a molar mass of 66.0 g/mol ) is added, it dissolves via the reaction X(s)+H2O(l)→X(aq) and the temperature of the solution increases to 29.5 ∘C . Calculate the enthalpy change, ΔH, for this reaction per mole of X. Assume that the specific heat of the resulting solution is equal to that of water [4.18 J/(g⋅∘C)], that density of water is 1.00...
A student determines the heat of dissolution of solid ammonium bromide using a coffee-cup calorimeter of...
A student determines the heat of dissolution of solid ammonium bromide using a coffee-cup calorimeter of negligible heat capacity. When 6.34 g of NH4Br(s) is dissolved in 119.00 g of water, the temperature of the solution drops from 25.00 to 22.76 °C. Based on the student's observation, calculate the enthalpy of dissolution of NH4Br(s) in kJ/mol. Assume the specific heat of the solution is 4.184 J/g°C. ΔHdissolution =  kJ/mol
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT