Question

A mixture of 1.00 g H2 and 1.06 g H2S in a 0.500−L flask comes to...

A mixture of 1.00 g H2 and 1.06 g H2S in a 0.500−L flask comes to equilibrium at 1670 K: 2H2(g)+S2(g)⇌2H2S. The equilibrium amount of S2(g) found is 8.00×10−6mol. Determine the value of KP at 1670 K.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider the following reaction at equilibrium: 2H2(g)+S2(g)⇌2H2S(g)+heat In a 10.0-L container, an equilibrium mixture contains 2.20...
Consider the following reaction at equilibrium: 2H2(g)+S2(g)⇌2H2S(g)+heat In a 10.0-L container, an equilibrium mixture contains 2.20 g of H2, 10.9 g of S2 and 68.1 g of H2S. Part A What is the numerical Kc value for this equilibrium mixture? Part B If more H2 is added to the equlibrium mixture, how will the equilibrium shift? Part C How will the equilibrium shift if the mixture is placed in a 5.00-L container with no change in temperature? Part D If...
Consider the reaction for the decomposition of hydrogen disulfide: 2H2S(g)⇌2H2(g)+S2(g), Kc = 1.67×10−7 at 800∘C A...
Consider the reaction for the decomposition of hydrogen disulfide: 2H2S(g)⇌2H2(g)+S2(g), Kc = 1.67×10−7 at 800∘C A 0.500 L reaction vessel initially contains 0.100 mol of H2S and 0.138 mol of  H2 at 800∘C.​ Find the equilibrium concentration of  [S2].
Consider the reaction: CO(g)+2H2(g)⇌CH3OH(g) A reaction mixture in a 5.21 −L flask at 500 K contains...
Consider the reaction: CO(g)+2H2(g)⇌CH3OH(g) A reaction mixture in a 5.21 −L flask at 500 K contains 9.04 g CO and 0.58 g of H2. At equilibrium, the flask contains 2.34 g CH3OH. Calculate the equilibrium constant at this temperature.
Consider the reaction: CO(g)+2H2(g)⇌CH3OH(g) A reaction mixture in a 5.19-L flask at 500 K contains 9.02...
Consider the reaction: CO(g)+2H2(g)⇌CH3OH(g) A reaction mixture in a 5.19-L flask at 500 K contains 9.02 g of CO and 0.57 g of H2. At equilibrium, the flask contains 2.35 g of CH3OH. Calculate the equilibrium constant at this temperature.
When the reaction 2H2S(g) ⇌ 2H2(g) + S2(g) is carried out at 1065°C, Kp = 0.012....
When the reaction 2H2S(g) ⇌ 2H2(g) + S2(g) is carried out at 1065°C, Kp = 0.012. Starting with pure H2S at 1065°, what must the initial pressure of H2S be if the equilibrated mixture at this temperature is to contain 0.250 atm of H2(g)?
A 1.0 L flask is charged with a gaseous mixture of 1.00 mol each of gaseous...
A 1.0 L flask is charged with a gaseous mixture of 1.00 mol each of gaseous reactants,CO, H2O, and 1.00 mol each of gaseous products CO2 and H2 and exposed to a zinc oxide - copper oxide catalyst at 500 K. Determine the composition of the mixture at equilibrium at this temperature.The equilibrium constant, Kc, atthis temperature is 102
1. Consider the following reaction: CO(g)+2H2(g)⇌CH3OH(g) A reaction mixture in a 5.25 −L flask at a...
1. Consider the following reaction: CO(g)+2H2(g)⇌CH3OH(g) A reaction mixture in a 5.25 −L flask at a certain temperature contains 26.8 g CO and 2.35 g H2. At equilibrium, the flask contains 8.64 g CH3OH. Part A Calculate the equilibrium constant (Kc) for the reaction at this temperature. 2. Consider the following reaction: CO(g)+H2O(g)⇌CO2(g)+H2(g) Kp=0.0611 at 2000 K A reaction mixture initially contains a CO partial pressure of 1358 torr and a H2O partial pressure of 1764 torr at 2000 K....
A 1.00 kg sample of Sb2S3 (s) and a 10.0 g sample of H2 (g) are...
A 1.00 kg sample of Sb2S3 (s) and a 10.0 g sample of H2 (g) are allowed to react in 25.0L container at 713K. At equilibrium, 72.6 g H2S (g) is present? What is the value of K at 713K for the following reaction? The value of Kp? Sb2S3 (s) + 3 H2 (g) <--> 2 Sb (s) + 3 H2S (g)
Consider the following reaction: CO(g)+2H2(g)⇌CH3OH(g) A reaction mixture in a 5.25 −L flask at a certain...
Consider the following reaction: CO(g)+2H2(g)⇌CH3OH(g) A reaction mixture in a 5.25 −L flask at a certain temperature contains 27.2 g CO and 2.32 g H2. At equilibrium, the flask contains 8.66 g CH3OH. Calculate the equilibrium constant (Kc) for the reaction at this temperature.
CO(g)+2H2(g)⇌CH3OH(g) A reaction mixture in a 5.25 −L flask at a certain temperature initially contains 27.1...
CO(g)+2H2(g)⇌CH3OH(g) A reaction mixture in a 5.25 −L flask at a certain temperature initially contains 27.1 g CO and 2.34 g H2. At equilibrium, the flask contains 8.65 g CH3OH. Calculate the equilibrium constant (Kc) for the reaction at this temperature.