Question

Which of the following is a characteristic of the Bohr model of the hydrogen atom? a)As...

Which of the following is a characteristic of the Bohr model of the hydrogen atom?

a)As the energy level (n) increases the adjacent energy levels do not follow a pattern. The energy differences for adjacent lev

els may converge, diverge, or remain constant.

b)As the energy level (n) increases the energy difference between adjacent energy levels remains constant.

c)As the energy level (n) increases the adjacent energy levels converge and get closer together in energy.

d)As the energy level (n) increases the adjacent energy levels diverge and get farther apart in energy.

Homework Answers

Answer #1

c) As the energy level (n) increases the adjacent energy levels converge and get closer together in energy.

The series converge because as an electron goes to higher energy levels, it is farther
away from the nucleus and so the nucleus attracts it with less force. Therefore less
energy is required to move it to the next higher energy level. Since the energy levels
are closer the higher they get, each series will converge toward the high-energy end
of the series, that is, the shorter wavelengths or higher frequencies. The spectrum of
hydrogen is a classic example of this convergence at the higher-energy or shorter
wavelength end of each series.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Answer the following questions using the Bohr model of the hydrogen atom. a) A hydrogen atom...
Answer the following questions using the Bohr model of the hydrogen atom. a) A hydrogen atom is the n = 3 excited state when its electron absorbs a photon of energy 4.40 eV. Draw a diagram roughly to scale, of relevant energy levels for this situation. Make sure to show and label the initial energy of the H atom in the n=3 state, the energy level at which this atom loses its electron, and kinetic energy of the electron. b)What...
The Bohr Model of the hydrogen atom proposed that there were very specific energy states that...
The Bohr Model of the hydrogen atom proposed that there were very specific energy states that the electron could be in. These states were called stationary orbits or stationary states. Higher energy states were further from the nucleus. These orbits were thought to be essentially spherical shells in which the electrons orbited at a fixed radius or distance from the nucleus. The smallest orbit is represented by n=1, the next smallest n=2, and so on, where n is a positive...
1). The Bohr Model of the hydrogen atom proposed that there were very specific energy states...
1). The Bohr Model of the hydrogen atom proposed that there were very specific energy states that the electron could be in. These states were called stationary orbits or stationary states. Higher energy states were further from the nucleus. These orbits were thought to be essentially spherical shells in which the electrons orbited at a fixed radius or distance from the nucleus. The smallest orbit is represented by n=1, the next smallest n=2, and so on, where n is a...
Which of the following provisions of the Bohr atomic model of hydrogen turned out to be...
Which of the following provisions of the Bohr atomic model of hydrogen turned out to be false? The line spectrum of hydrogen is produced when photons are emitted having energies which are differences between quantum energy levels. b) The energy of the electron is quantized. An electron moves in a circular orbit around the nucleus. The energy of the electron is inversely proportional to the square of the quantum number n.
Light from a laser of wavelength 475 nm is incident upon an atom of hydrogen in...
Light from a laser of wavelength 475 nm is incident upon an atom of hydrogen in the first excited state. (a) What is the highest energy level (value of n) to which the hydrogen atom can be excited by the laser?   (b) What happens if the laser wavelength is 295 nm? Another way to get the energy levels of the Bohr atom is to assume that the stationary states are those for which the circumference of the orbit is an...
Of the following transitions in the Bohr hydrogen atom, the _ transition results in the emission...
Of the following transitions in the Bohr hydrogen atom, the _ transition results in the emission of lowest-energy photon: (A) n = 2 --> n = 1 (B) n = 6 --> n = 1 (C) n = 6 --> n = 5 (D) n = 5 --> n = 6 (E) n = 1 --> n = 6
Consider the Bohr model of the hydrogen atom for which an electron in the ground state...
Consider the Bohr model of the hydrogen atom for which an electron in the ground state executes uniform circular motion about a stationary proton at radius a0. (a) Find an expression for the kinetic energy of the electron in the ground state. (b) Find an expression for the potential energy of the electron in the ground state. (c) Find an expression for the ionization energy of an electron from the ground state of the hydrogen atom. The ionization energy is...
31) For the Bohr hydrogen atom determine: (½ pt each = 2 pts total) (a) The...
31) For the Bohr hydrogen atom determine: (½ pt each = 2 pts total) (a) The radius of the orbit n = 4: (b) Whether there is an orbit having a radius of 4.00 Angstroms: *please be detailed (c) The energy level corresponding to n = 8: (d) Whether there is an energy level at– 2.5 x 10^17 J:
(a) (5 pts.) What are the three lowest energies of the singly ionized He-atom according to...
(a) (5 pts.) What are the three lowest energies of the singly ionized He-atom according to the Bohr model? (b) (5 pts.) Calculate the energies of the photons emitted when electronic transitions take place between all possible states. The excited levels of Hydrogen have lifetimes of order 10^-8 s. In very highly excited states (large n), the states get closer and closer together.   At what value of n do the spacings of the energy levels become comparable to the energy...
Let's use the Bohr model equations to explore some properties of the hydrogen atom. We will...
Let's use the Bohr model equations to explore some properties of the hydrogen atom. We will determine the kinetic, potential, and total energies of the hydrogen atom in the n=2 state, and find the wavelength of the photon emitted in the transition n=2?n=1. Find the wavelength for the transition n=3 ? n=2 for singly ionized helium, which has one electron and a nuclear charge of 2e. (Note that the value of the Rydberg constant is four times as great as...