Question

For chemical reactions where all reactants and products are in the gas phase the amount of...

For chemical reactions where all reactants and products are in the gas phase the amount of each gas in the vessel can be expressed either as partial pressures or as concentrations. As such the equilibrium constant for a gas phase reaction can also be expressed in terms of concentrations or pressures. For the general reaction,

aA(g)+bB(g)⇌cC(g)+dD(g)

Kp=(PC)c(PD)d(PA)a(PB)b and Kc=[C]c[D]d[A]a[B]b.

It is possible to interconvert between Kp and Kcusing

Kp=Kc(RTn

where R=0.08314 L bar mol−1 K−1 and Δn is the difference in stoichiometric coefficients between gaseous products and gaseous reactants.

If we assume that the gaseous reactant and products are “ideal” and the partial pressures of the reactants and products were expressed in bar, then the thermodynamic equilibrium constant, K is the magnitude (or numerical value) of Kp.

Part A

For the reaction

2CH4(g)⇌C2H2(g)+3H2(g)

Kc=0.160 mol2 L−2 at 1683 ∘C . What is Kp for the reaction at this temperature? (enter answer in bar^2)

Part B

What is the unitless thermodynamic equilibrium constant K for the reaction in part A?

Part C

For the reaction

N2(g)+3H2(g)⇌2NH3(g)

Kp=3.90×10−3 bar−2 at 306 ∘C . What is Kc for the reaction at this temperature? (enter answer in L^2 mol^-2)

Part D

What is the unitless thermodynamic equilibrium constant K for the reaction in part C?

Express your answer numerically.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The equilibrium constant, Kc, is calculated using molar concentrations. For gaseous reactions another form of the...
The equilibrium constant, Kc, is calculated using molar concentrations. For gaseous reactions another form of the equilibrium constant, Kp, is calculated from partial pressures instead of concentrations. These two equilibrium constants are related by the equation Kp=Kc(RT)Δn where R=0.08206 L⋅atm/(K⋅mol), T is the absolute temperature, and Δn is the change in the number of moles of gas (sum moles products - sum moles reactants). For example, consider the reaction N2(g)+3H2(g)⇌2NH3(g) for which Δn=2−(1+3)=−2. For the reaction 2A(g)+2B(g)⇌C(g) Kc = 71.6...
The equilibrium constant, Kc, is calculated using molar concentrations. For gaseous reactions another form of the...
The equilibrium constant, Kc, is calculated using molar concentrations. For gaseous reactions another form of the equilibrium constant, Kp, is calculated from partial pressures instead of concentrations. These two equilibrium constants are related by the equation Kp=Kc(RT)Δn where R=0.08206 L⋅atm/(K⋅mol), T is the absolute temperature, and Δn is the change in the number of moles of gas (sum moles products - sum moles reactants). For example, consider the reaction N2(g)+3H2(g)⇌2NH3(g) for which Δn=2−(1+3)=−2. A) For the reaction 3A(g)+2B(g)⇌C(g) Kc =...
The equilibrium constant, Kc, is calculated using molar concentrations. For gaseous reactions another form of the...
The equilibrium constant, Kc, is calculated using molar concentrations. For gaseous reactions another form of the equilibrium constant, Kp, is calculated from partial pressures instead of concentrations. These two equilibrium constants are related by the equation Kp=Kc(RT)Δn where R=0.08206 L⋅atm/(K⋅mol), T is the absolute temperature, and Δn is the change in the number of moles of gas (sum moles products - sum moles reactants). For example, consider the reaction N2(g)+3H2(g)⇌2NH3(g) for which Δn=2−(1+3)=−2. a For the reaction X(g)+3Y(g)⇌2Z(g) Kp =...
For chemical reactions involving ideal gases, the equilibrium constant K can be expressed either in terms...
For chemical reactions involving ideal gases, the equilibrium constant K can be expressed either in terms of the concentrations of the gases (in M) or as a function of the partial pressures of the gases (in atmospheres). In the latter case, the equilibrium constant is denoted as Kp to distinguish it from the concentration-based equilibrium constant K. Part A For the reaction 2CH4(g)⇌C2H2(g)+3H2(g) K = 0.155 at 1635 ∘C . What is Kp for the reaction at this temperature? Express...
For chemical reactions involving ideal gases, the equilibrium constant K can be expressed either in terms...
For chemical reactions involving ideal gases, the equilibrium constant K can be expressed either in terms of the concentrations of the gases (in M) or as a function of the partial pressures of the gases (in atmospheres). In the latter case, the equilibrium constant is denoted as Kp to distinguish it from the concentration-based equilibrium constant K.' Part A For the reaction 2CH4(g)⇌C2H2(g)+3H2(g) K = 0.130 at 1668 ∘C . What is Kp for the reaction at this temperature? Express...
For chemical reactions involving ideal gases, the equilibrium constant K can be expressed either in terms...
For chemical reactions involving ideal gases, the equilibrium constant K can be expressed either in terms of the concentrations of the gases (in M) or as a function of the partial pressures of the gases (in atmospheres). In the latter case, the equilibrium constant is denoted as Kp to distinguish it from the concentration-based equilibrium constant K. Part A For the reaction 2CH4(g)⇌C2H2(g)+3H2(g) K = 0.165 at 1521 ∘C . What is Kp for the reaction at this temperature? Express...
Calculating Equilibrium Constants. The equilibrium constant, K, of a reaction at a particular temperature is determined...
Calculating Equilibrium Constants. The equilibrium constant, K, of a reaction at a particular temperature is determined by the concentrations or pressures of the reactants and products at equilibrium. For a gaseous reaction with the general form aA+bB⇌cC+dD the Kc and Kp expressions are given by Kc=[C]c[D]d[A]a[B]b Kp=(PC)c(PD)d(PA)a(PB)b The subscript c or p indicates whether K is expressed in terms of concentrations or pressures. Equilibrium-constant expressions do not include a term for any pure solids or liquids that may be involved...
17. The initial concentrations or pressures of reactants and products are given for each of the...
17. The initial concentrations or pressures of reactants and products are given for each of the following systems. Calculate the reaction quotient and determine the direction in which each system will proceed to reach equilibrium. (a) 2NH3 (g) ⇌ N2 (g) + 3H2 (g) Kc = 17; [NH3] = 0.20 M, [N2] = 1.00 M, [H2] = 1.00 M (b) 2NH3 (g) ⇌ N2 (g) + 3H2 (g) KP = 6.8 × 104 ; initial pressures: NH3 = 3.0 atm,...
Consider the gas-phase reaction, Cl2(g) + Br2(g) <=> 2 BrCl(g), for which Kp = 32 at...
Consider the gas-phase reaction, Cl2(g) + Br2(g) <=> 2 BrCl(g), for which Kp = 32 at 500 K. If the mixture is analyzed and found to contain 0.45 bar of Cl2, 0.65 bar of Br2 and 3.1 bar of BrCl, describe the situation: 1. Q < K and more products will be made to reach equilibrium. 2. Q < K and more reactants will be made to reach equilibrium. 3. Within 1 decimal place, Q = K and the reaction...
At 2000 degrees celcius, the gas-phase equilibrium 2NO(g)=N2(g)+o2(g) has an equilibrium constant of Kc=2.4X10^3. Use this...
At 2000 degrees celcius, the gas-phase equilibrium 2NO(g)=N2(g)+o2(g) has an equilibrium constant of Kc=2.4X10^3. Use this information to answer the following. a) Determine the relationship between Kc and Kp for this equilibrium. What is the value of Kp? b) Determine the value of Kc for the reaction 1/2N2(g)+1/2O2(g)=NO(g). c) Determine the equilibrium concentrations of NO, N2, O2 when 0.200 mol NO(g) is placed into a (n evacuated) 1.000 L container and heated to 2000 degrees celcius.